The etiology of autism is complex, and in most cases the underlying pathologic mechanisms are unknown. Autism is a hetereogeneous disorder, diagnosed subjectively on the basis of a large number of criteria. Recent research has investigated genetics, in utero insults and brain function as well as neurochemical and immunological factors. On the basis of family and twin studies, there appears to be a genetic basis for a wide "autistic syndrome." About a quarter of cases of autism are associated with genetic disorders such as fragile X syndrome or with infectious diseases such as congenital rubella. Genetic studies have shown an association between autism markers of brain development such as 3 markers of the c-Harvey-ros oncogene and the homeobox gene EN2. In some cases, autism is associated with insults early in gestation, including thalidomide embryopathy. Autism may arise from abnormal central nervous system functioning, since most autistic patients have indications of brain dysfunction, and about half of them have abnormal electroencephalograms. Similarly, the pattern of evoked response potentials and conduction time is altered in autistic children. There is substantial evidence from neuroimaging studies that dysfunctions in the cerebellum and possibly the temporal lobe and association cortex occur in autistic symptoms. Neurochemical studies have investigated the role of serotonin, epinephrine and norepinephrine, since levels of these neurotransmitters are altered in autism, although other hypotheses implicate overactive brain opioid systems and changes in oxytocin neurotransmission. Autoimmunity may also play a role; antibodies against myelin basic protein are often found in children with autism, who also have increased eosinophil and basophil response to IgE-mediated reactions. In summary, the prevailing view is that autism is caused by a pathophysiologic process arising from the interaction of an early environmental insult and a genetic predisposition.