Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials

Hyperbolic metamaterial (HMM), a sub-wavelength periodic artificial structure with hyperbolic dispersion, can enhance the spontaneous emission of quantum emitters. Here, we demonstrate the large spontaneous emission rate enhancement of an organic dye placed in a grating coupled hyperbolic metamaterial (GCHMM). A two-dimensional (2D) silver diffraction grating coupled with an Ag/Al2O3 HMM shows 18-fold spontaneous emission decay rate enhancement of dye molecules with respect to the same HMM without grating. The experimental results are compared with analytical models and numerical simulations, which confirm that the observed enhancement of GCHMM is due to the outcoupling of non-radiative plasmonic modes as well as strong plasmon-exciton coupling in HMM via diffracting grating.

[1]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[2]  David R. Smith,et al.  Negative refraction in indefinite media , 2004 .

[3]  Eric E Fullerton,et al.  Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. , 2014, Nature nanotechnology.

[4]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[5]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[6]  H. Ho,et al.  Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. , 2014, Chemical Society reviews.

[7]  S. Kawata,et al.  Subwavelength optical imaging through a metallic nanorod array. , 2005, Physical review letters.

[8]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[9]  K. V. Sreekanth,et al.  Directional spontaneous emission enhancement in hyperbolic metamaterials , 2013 .

[10]  J. Parsons,et al.  Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths , 2013, Nature Photonics.

[11]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[12]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[13]  Zubin Jacob,et al.  Broadband super-planckian thermal emission from hyperbolic metamaterials , 2013, CLEO: 2013.

[14]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[15]  J. R. Sambles,et al.  Scattering-matrix approach to multilayer diffraction , 1995 .

[16]  V. Podolskiy,et al.  Stimulated emission of surface plasmon polaritons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[17]  James M. Morand,et al.  A performance evaluation , 1980 .

[18]  G. Wurtz,et al.  Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp , 2012, Scientific Reports.

[19]  Qiaoqiang Gan,et al.  Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping , 2011 .

[20]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[21]  P. Sheng,et al.  Theory and Simulations , 2003 .

[22]  A. Husakou,et al.  Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant. , 2007, Physical review letters.

[23]  Willem L. Vos,et al.  Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals , 2004, Nature.

[24]  J. Popp,et al.  Surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[25]  R. A. Smith,et al.  Single Photon Sources , 2008 .

[26]  Z. Jacob,et al.  Controlling spontaneous emission with metamaterials. , 2010, Optics letters.

[27]  W. R. Thomas,et al.  Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation. , 1982, Applied optics.

[28]  K. V. Sreekanth,et al.  Experimental demonstration of surface and bulk plasmon polaritons in hypergratings , 2013, Scientific Reports.

[29]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[30]  Dominic Lepage,et al.  Enhanced spontaneous emission inside hyperbolic metamaterials. , 2014, Optics express.

[31]  L. Ran,et al.  Surface modes at the interfaces between isotropic media and indefinite media. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  David Artigas,et al.  Dyakonov surface waves in photonic metamaterials. , 2005, Physical review letters.

[33]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[34]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[35]  Hongqi Xu,et al.  Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes , 2011 .

[36]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[37]  K. V. Sreekanth,et al.  Negative refraction in graphene-based hyperbolic metamaterials , 2013 .

[38]  S. Hughes Enhanced single-photon emission from quantum dots in photonic crystal waveguides and nanocavities. , 2004, Optics letters.

[39]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[40]  Michael Scalora,et al.  Negative refraction and subwavelength imaging using transparent metal-dielectric stacks , 2006 .

[41]  Z. Jacob,et al.  Enhanced and directional single-photon emission in hyperbolic metamaterials , 2013, 1301.4676.

[42]  K. V. Sreekanth,et al.  Excitation of surface electromagnetic waves in a graphene-based Bragg grating , 2012, Scientific Reports.

[43]  R. F. Brown,et al.  PERFORMANCE EVALUATION , 2019, ISO 22301:2019 and business continuity management – Understand how to plan, implement and enhance a business continuity management system (BCMS).