The Dixmier Trace and the Noncommutative Residue for Multipliers on Compact Manifolds
暂无分享,去创建一个
[1] Victor Ivrii,et al. 100 years of Weyl’s law , 2016, Microlocal Analysis, Sharp Spectral Asymptotics and Applications V.
[2] Michael Ruzhansky,et al. Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and L-L Fourier multipliers on compact homogeneous manifolds , 2015, Journal of Mathematical Analysis and Applications.
[3] Michael Ruzhansky,et al. Fourier multipliers, symbols, and nuclearity on compact manifolds , 2014, Journal d'Analyse Mathématique.
[4] Michael Ruzhansky,et al. $L^{p}$ -BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT LIE GROUPS , 2016, Journal of the Institute of Mathematics of Jussieu.
[5] Duv'an Cardona. Nuclear Pseudo-Differential Operators in Besov Spaces on Compact Lie Groups , 2016, 1610.09042.
[6] F. Sukochev,et al. Dixmier traces and non-commutative analysis , 2016 .
[7] Michael Ruzhansky,et al. The Gohberg Lemma, compactness, and essential spectrum of operators on compact Lie groups , 2013, 1306.0041.
[8] Duván Cardona Sánchez. Besov continuity for multipliers defined on compact Lie groups , 2016 .
[9] A. Pietsch. Traces and Residues of Pseudo-Differential Operators on the Torus , 2015 .
[10] Michael Ruzhansky,et al. Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary , 2015, 1505.02261.
[11] D. C. Martinez,et al. Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary , 2015 .
[12] Michael Ruzhansky,et al. Nonharmonic Analysis of Boundary Value Problems , 2015, 1504.00777.
[13] Michael Ruzhansky,et al. Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Fourier multipliers on compact Lie groups , 2015, Mathematische Zeitschrift.
[14] Michael Ruzhansky,et al. $$L^p$$Lp Fourier multipliers on compact Lie groups , 2011, 1102.3988.
[15] Veronique Fischer. Intrinsic pseudo-differential calculi on any compact Lie group , 2014, 1410.1444.
[16] Michael Ruzhansky,et al. Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds , 2014, 1408.6170.
[17] Michael Ruzhansky,et al. Schatten classes on compact manifolds: Kernel conditions☆ , 2014, 1403.6158.
[18] Michael Ruzhansky,et al. Global functional calculus for operators on compact Lie groups , 2013, 1307.1464.
[19] Michael Ruzhansky,et al. Hörmander Class of Pseudo-Differential Operators on Compact Lie Groups and Global Hypoellipticity , 2010, Journal of Fourier Analysis and Applications.
[20] Michael Ruzhansky,et al. Lp-Nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups , 2013, 1303.4792.
[21] S. Paycha,et al. The canonical trace and the noncommutative residue on the noncommutative torus , 2013, 1303.0241.
[22] M. Lesch,et al. Classification of traces and hypertraces on spaces of classical pseudodifferential operators , 2010, 1011.3238.
[23] S. Paycha. Regularised Integrals, Sums, and Traces: An Analytic Point of View , 2012 .
[24] R. Strichartz. Spectral Asymptotics Revisited , 2010, 1012.0272.
[25] S. Scott. Traces and Determinants of Pseudodifferential Operators , 2010 .
[26] Ville Turunen,et al. Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics , 2009 .
[27] L. Rodino,et al. Dixmier traceability for general pseudo-differential operators , 2008 .
[28] S. Scott,et al. A Laurent Expansion for Regularized Integrals of Holomorphic Symbols , 2005, math/0506211.
[29] G. Grubb. A Resolvent Approach to Traces and Zeta Laurent Expansions , 2003, math/0311081.
[30] G. Grubb. On the Logarithm Component in Trace Defect Formulas , 2004, math/0411483.
[31] B. Iochum,et al. Moyal Planes are Spectral Triples , 2003, hep-th/0307241.
[32] G. Grubb,et al. Traces and quasi-traces on the Boutet de Monvel algebra , 2003, math/0311001.
[33] G. Grubb,et al. TRACE EXPANSIONS AND THE NONCOMMUTATIVE RESIDUE FOR MANIFOLDS WITH BOUNDARY , 2001, math/0106030.
[34] E. Schrohe. A Short Introduction to Boutet de Monvel’s Calculus , 2001 .
[35] Mikhail Shubin,et al. Pseudodifferential Operators in ℝn , 2001 .
[36] S. Paycha,et al. Weighted Traces on Algebras of Pseudo-Differential Operators and Geometry of Loop Groups , 2000, math/0001117.
[37] E. Schrohe. Noncommutative Residues, Dixmier's Trace, and Heat Trace Expansions on Manifolds with Boundary , 1999, math/9911053.
[38] E. Schrohe,et al. Dixmier's trace for boundary value problems , 1998 .
[39] M. Lesch. On the Noncommutative Residue for Pseudodifferential Operators with log-Polyhomogeneous Symbols , 1997, dg-ga/9708010.
[40] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[41] F. Golse,et al. The Noncommutative Residue for Manifolds with Boundary , 1996 .
[42] M. Kontsevich,et al. Geometry of determinants of elliptic operators , 1994, hep-th/9406140.
[43] Howard D. Fegan,et al. Introduction to Compact Lie Groups , 1991 .
[44] M. Shubin. Pseudodifferential Operators and Spectral Theory , 1987 .
[45] Y. Manin. K-Theory, Arithmetic and Geometry , 1987 .
[46] M. Wodzicki. Noncommutative residue Chapter I. Fundamentals , 1987 .
[47] V. Ivrii. Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary , 1984 .
[48] L. B. D. Monvel. Boundary problems for pseudo-differential operators , 1971 .
[49] L. B. Monvel. Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .
[50] Louis Boutet de Monvel. Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .