The Dixmier Trace and the Noncommutative Residue for Multipliers on Compact Manifolds

[1]  Victor Ivrii,et al.  100 years of Weyl’s law , 2016, Microlocal Analysis, Sharp Spectral Asymptotics and Applications V.

[2]  Michael Ruzhansky,et al.  Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and L-L Fourier multipliers on compact homogeneous manifolds , 2015, Journal of Mathematical Analysis and Applications.

[3]  Michael Ruzhansky,et al.  Fourier multipliers, symbols, and nuclearity on compact manifolds , 2014, Journal d'Analyse Mathématique.

[4]  Michael Ruzhansky,et al.  $L^{p}$ -BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT LIE GROUPS , 2016, Journal of the Institute of Mathematics of Jussieu.

[5]  Duv'an Cardona Nuclear Pseudo-Differential Operators in Besov Spaces on Compact Lie Groups , 2016, 1610.09042.

[6]  F. Sukochev,et al.  Dixmier traces and non-commutative analysis , 2016 .

[7]  Michael Ruzhansky,et al.  The Gohberg Lemma, compactness, and essential spectrum of operators on compact Lie groups , 2013, 1306.0041.

[8]  Duván Cardona Sánchez Besov continuity for multipliers defined on compact Lie groups , 2016 .

[9]  A. Pietsch Traces and Residues of Pseudo-Differential Operators on the Torus , 2015 .

[10]  Michael Ruzhansky,et al.  Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary , 2015, 1505.02261.

[11]  D. C. Martinez,et al.  Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary , 2015 .

[12]  Michael Ruzhansky,et al.  Nonharmonic Analysis of Boundary Value Problems , 2015, 1504.00777.

[13]  Michael Ruzhansky,et al.  Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Fourier multipliers on compact Lie groups , 2015, Mathematische Zeitschrift.

[14]  Michael Ruzhansky,et al.  $$L^p$$Lp Fourier multipliers on compact Lie groups , 2011, 1102.3988.

[15]  Veronique Fischer Intrinsic pseudo-differential calculi on any compact Lie group , 2014, 1410.1444.

[16]  Michael Ruzhansky,et al.  Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds , 2014, 1408.6170.

[17]  Michael Ruzhansky,et al.  Schatten classes on compact manifolds: Kernel conditions☆ , 2014, 1403.6158.

[18]  Michael Ruzhansky,et al.  Global functional calculus for operators on compact Lie groups , 2013, 1307.1464.

[19]  Michael Ruzhansky,et al.  Hörmander Class of Pseudo-Differential Operators on Compact Lie Groups and Global Hypoellipticity , 2010, Journal of Fourier Analysis and Applications.

[20]  Michael Ruzhansky,et al.  Lp-Nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups , 2013, 1303.4792.

[21]  S. Paycha,et al.  The canonical trace and the noncommutative residue on the noncommutative torus , 2013, 1303.0241.

[22]  M. Lesch,et al.  Classification of traces and hypertraces on spaces of classical pseudodifferential operators , 2010, 1011.3238.

[23]  S. Paycha Regularised Integrals, Sums, and Traces: An Analytic Point of View , 2012 .

[24]  R. Strichartz Spectral Asymptotics Revisited , 2010, 1012.0272.

[25]  S. Scott Traces and Determinants of Pseudodifferential Operators , 2010 .

[26]  Ville Turunen,et al.  Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics , 2009 .

[27]  L. Rodino,et al.  Dixmier traceability for general pseudo-differential operators , 2008 .

[28]  S. Scott,et al.  A Laurent Expansion for Regularized Integrals of Holomorphic Symbols , 2005, math/0506211.

[29]  G. Grubb A Resolvent Approach to Traces and Zeta Laurent Expansions , 2003, math/0311081.

[30]  G. Grubb On the Logarithm Component in Trace Defect Formulas , 2004, math/0411483.

[31]  B. Iochum,et al.  Moyal Planes are Spectral Triples , 2003, hep-th/0307241.

[32]  G. Grubb,et al.  Traces and quasi-traces on the Boutet de Monvel algebra , 2003, math/0311001.

[33]  G. Grubb,et al.  TRACE EXPANSIONS AND THE NONCOMMUTATIVE RESIDUE FOR MANIFOLDS WITH BOUNDARY , 2001, math/0106030.

[34]  E. Schrohe A Short Introduction to Boutet de Monvel’s Calculus , 2001 .

[35]  Mikhail Shubin,et al.  Pseudodifferential Operators in ℝn , 2001 .

[36]  S. Paycha,et al.  Weighted Traces on Algebras of Pseudo-Differential Operators and Geometry of Loop Groups , 2000, math/0001117.

[37]  E. Schrohe Noncommutative Residues, Dixmier's Trace, and Heat Trace Expansions on Manifolds with Boundary , 1999, math/9911053.

[38]  E. Schrohe,et al.  Dixmier's trace for boundary value problems , 1998 .

[39]  M. Lesch On the Noncommutative Residue for Pseudodifferential Operators with log-Polyhomogeneous Symbols , 1997, dg-ga/9708010.

[40]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[41]  F. Golse,et al.  The Noncommutative Residue for Manifolds with Boundary , 1996 .

[42]  M. Kontsevich,et al.  Geometry of determinants of elliptic operators , 1994, hep-th/9406140.

[43]  Howard D. Fegan,et al.  Introduction to Compact Lie Groups , 1991 .

[44]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[45]  Y. Manin K-Theory, Arithmetic and Geometry , 1987 .

[46]  M. Wodzicki Noncommutative residue Chapter I. Fundamentals , 1987 .

[47]  V. Ivrii Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary , 1984 .

[48]  L. B. D. Monvel Boundary problems for pseudo-differential operators , 1971 .

[49]  L. B. Monvel Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .

[50]  Louis Boutet de Monvel Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .