A screen for modulators reveals that orexin-A rapidly stimulates thyrotropin releasing hormone expression and release in hypothalamic cell culture

[1]  J. Charli,et al.  Regulation of TRH neurons and energy homeostasis-related signals under stress. , 2015, The Journal of endocrinology.

[2]  Robert L. Lloyd,et al.  Ketamine modulates TRH and TRH-like peptide turnover in brain and peripheral tissues of male rats , 2015, Peptides.

[3]  J. Charli,et al.  An Acute Injection of Corticosterone Increases Thyrotrophin‐Releasing Hormone Expression in the Paraventricular Nucleus of the Hypothalamus but Interferes with the Rapid Hypothalamus Pituitary Thyroid Axis Response to Cold in Male Rats , 2014, Journal of neuroendocrinology.

[4]  E. Horjales-Araujo,et al.  Lateral hypothalamic thyrotropin-releasing hormone neurons: Distribution and relationship to histochemically defined cell populations in the rat , 2014, Neuroscience.

[5]  J. Bains,et al.  Beyond inhibition: GABA synapses tune the neuroendocrine stress axis , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[6]  C. Fekete,et al.  Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. , 2014, Endocrine reviews.

[7]  Benjamin R. Arenkiel,et al.  Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. , 2013, Cell metabolism.

[8]  J. Antunes-Rodrigues,et al.  Tolerance to hypophagia induced by prolonged treatment with a CB1 antagonist is related to the reversion of anorexigenic neuropeptide gene expression in the hypothalamus , 2013, Regulatory Peptides.

[9]  A. N. van den Pol,et al.  Thyrotropin-Releasing Hormone (TRH) Inhibits Melanin-Concentrating Hormone Neurons: Implications for TRH-Mediated Anorexic and Arousal Actions , 2012, The Journal of Neuroscience.

[10]  J. Bains,et al.  Short‐term plasticity impacts information transfer at glutamate synapses onto parvocellular neuroendocrine cells in the paraventricular nucleus of the hypothalamus , 2011, The Journal of physiology.

[11]  J. Charli,et al.  The systemic inhibition of nitric oxide production rapidly regulates TRH mRNA concentration in the paraventricular nucleus of the hypothalamus and serum TSH concentration. Studies in control and cold-stressed rats , 2011, Brain Research.

[12]  R. Cone,et al.  Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. , 2010, Molecular endocrinology.

[13]  M. Tena-Sempere,et al.  Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic–pituitary axes) , 2010, Frontiers in Neuroendocrinology.

[14]  J. Charli,et al.  T3 differentially regulates TRH expression in developing hypothalamic neurons in vitro , 2009, Brain Research.

[15]  C. Fekete,et al.  Efferent projections of thyrotropin‐releasing hormone‐synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus , 2009, The Journal of comparative neurology.

[16]  J. Charli,et al.  Phosphorylated Cyclic-AMP-Response Element-Binding Protein and Thyroid Hormone Receptor Have Independent Response Elements in the Rat Thyrotropin-Releasing Hormone Promoter: An Analysis in Hypothalamic Cells , 2009, Neuroendocrinology.

[17]  I. McGregor,et al.  Involvement of hypothalamic peptides in the anorectic action of the CB1 receptor antagonist rimonabant (SR 141716) , 2009, The European journal of neuroscience.

[18]  T. Sakurai,et al.  Thyrotropin-Releasing Hormone Increases Behavioral Arousal through Modulation of Hypocretin/Orexin Neurons , 2009, The Journal of Neuroscience.

[19]  D. Burdakov,et al.  Stimulation of orexin/hypocretin neurones by thyrotropin‐releasing hormone , 2009, The Journal of physiology.

[20]  Z. Liposits,et al.  Novel Aspects of Glutamatergic Signalling in the Neuroendocrine System , 2008, Journal of neuroendocrinology.

[21]  J. Charli,et al.  The PKC and ERK/MAPK Pathways Regulate Glucocorticoid Action on TRH Transcription , 2008, Neurochemical Research.

[22]  A. Hollenberg The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. , 2008, Thyroid : official journal of the American Thyroid Association.

[23]  J. Charli,et al.  BDNF up-regulates pre-pro-TRH mRNA expression in the fetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway , 2007, Brain Research.

[24]  C. Vaslet,et al.  Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. , 2007, Endocrinology.

[25]  Masahiko Watanabe,et al.  Distribution of type 1 cannabinoid receptor (CB1)‐immunoreactive axons in the mouse hypothalamus , 2007, The Journal of comparative neurology.

[26]  S. Di,et al.  Opposing Crosstalk between Leptin and Glucocorticoids Rapidly Modulates Synaptic Excitation via Endocannabinoid Release , 2006, The Journal of Neuroscience.

[27]  F. Rage,et al.  Cold Stress Induces Metabolic Activation of Thyrotrophin‐Releasing Hormone‐Synthesising Neurones in the Magnocellular Division of the Hypothalamic Paraventricular Nucleus and Concomitantly Changes Ovarian Sympathetic Activity Parameters , 2006, Journal of neuroendocrinology.

[28]  J. Haller,et al.  Neurochemical characterization of hypothalamic neurons involved in attack behavior: Glutamatergic dominance and co-expression of thyrotropin-releasing hormone in a subset of glutamatergic neurons , 2005, Neuroscience.

[29]  C. Pirola,et al.  Thyrotropin-releasing hormone in cardiovascular pathophysiology , 2005, Regulatory Peptides.

[30]  C. Fekete,et al.  Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat , 2005, Brain Research.

[31]  J. Herman,et al.  Organization and regulation of paraventricular nucleus glutamate signaling systems: N‐methyl‐D‐aspartate receptors , 2005, The Journal of comparative neurology.

[32]  J. Charli,et al.  Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter. , 2005, Journal of molecular endocrinology.

[33]  Jun Lu,et al.  Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms , 2003, The Journal of Neuroscience.

[34]  S. Di,et al.  Nongenomic Glucocorticoid Inhibition via Endocannabinoid Release in the Hypothalamus: A Fast Feedback Mechanism , 2003, The Journal of Neuroscience.

[35]  L. Renaud,et al.  Pre- and postsynaptic gabab receptors modulate rapid neurotransmission from suprachiasmatic nucleus to parvocellular hypothalamic paraventricular nucleus neurons , 2003, Neuroscience.

[36]  C. Fekete,et al.  GABA-ergic innervation of thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat , 2002, Brain Research.

[37]  A. Ferguson,et al.  Cellular mechanisms of orexin actions on paraventricular nucleus neurones in rat hypothalamus , 2002, The Journal of physiology.

[38]  M. Arufe,et al.  Endogenous excitatory amino acid neurotransmission regulates thyroid-stimulating hormone and thyroid hormone secretion in conscious freely moving male rats , 2002, Endocrine.

[39]  J. Charli,et al.  An improved method for the expression of TRH in serum-supplemented primary cultures of fetal hypothalamic cells. , 2002, Brain research. Brain research protocols.

[40]  C. Small,et al.  Chronic intraparaventricular nuclear administration of orexin A in male rats does not alter thyroid axis or uncoupling protein-1 in brown adipose tissue , 2002, Regulatory Peptides.

[41]  A. Ferguson,et al.  Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates , 2002, Regulatory Peptides.

[42]  H. Kannan,et al.  Orexin depolarizes rat hypothalamic paraventricular nucleus neurons. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[43]  M. Pangalos,et al.  Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion , 2001, Neuroscience.

[44]  M. Guerra-Crespo,et al.  BDNF increases the early expression of TRH mRNA in fetal TrkB+ hypothalamic neurons in primary culture , 2001, The European journal of neuroscience.

[45]  D Smart,et al.  SB‐334867‐A: the first selective orexin‐1 receptor antagonist , 2001, British journal of pharmacology.

[46]  W. Rand,et al.  Association of Cocaine- and Amphetamine-Regulated Transcript-Immunoreactive Elements with Thyrotropin-Releasing Hormone-Synthesizing Neurons in the Hypothalamic Paraventricular Nucleus and Its Role in the Regulation of the Hypothalamic–Pituitary–Thyroid Axis during Fasting , 2000, The Journal of Neuroscience.

[47]  C. Small,et al.  Central Administration of Orexin A Suppresses Basal and Domperidone Stimulated Plasma Prolactin , 2000, Journal of neuroendocrinology.

[48]  J. Flier,et al.  Leptin Regulates Prothyrotropin-releasing Hormone Biosynthesis , 2000, The Journal of Biological Chemistry.

[49]  J. Herman,et al.  Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat , 2000, The Journal of comparative neurology.

[50]  W. Cullinan GABAA receptor subunit expression within hypophysiotropic CRH neurons: A dual hybridization histochemical study , 2000, The Journal of comparative neurology.

[51]  S. Bloom,et al.  The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. , 2000, The Journal of clinical investigation.

[52]  T. Nogimori,et al.  Effects of orexin A on thyrotropin-releasing hormone and thyrotropin secretion in rats. , 1999, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[53]  M. I. Smith,et al.  Orexin A activates locus coeruleus cell firing and increases arousal in the rat. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  V. Seutin,et al.  Recent advances in the pharmacology of quaternary salts of bicuculline. , 1999, Trends in pharmacological sciences.

[55]  A. Basbaum,et al.  Immunohistochemical localization of GABAB receptors in the rat central nervous system , 1999, The Journal of comparative neurology.

[56]  J. Charli,et al.  Dexamethasone Rapidly Regulates TRH mRNA Levels in Hypothalamic Cell Cultures: Interaction with the cAMP Pathway , 1998, Neuroendocrinology.

[57]  Marc G Caron,et al.  Dopamine receptors and brain function , 1996, Neuropharmacology.

[58]  A. N. van den Pol,et al.  Excitatory actions of GABA in developing rat hypothalamic neurones. , 1996, The Journal of physiology.

[59]  J. Charli,et al.  Phorbol ester or cAMP enhance thyrotropin-releasing hormone mRNA in primary cultures of hypothalamic cells , 1995, Neuroscience Letters.

[60]  D. Dolan,et al.  Cold- and ethanol-induced hypothermia reduces cellular levels of mRNA-encoding Thyrotropin-Releasing Hormone (TRH) in neurons of the preoptic area , 1992, Molecular and Cellular Neuroscience.

[61]  H. Vaudry,et al.  Neuroanatomical connections between corticotropin-releasing factor (CRF) and somatostatin (SRIF) nerve endings and thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of rat hypothalamus , 1992, Peptides.

[62]  W. Rand,et al.  Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. , 1992, Endocrinology.

[63]  F. Dudek,et al.  Excitatory amino acid antagonists inhibit synaptic responses in the guinea pig hypothalamic paraventricular nucleus. , 1991, Journal of neurophysiology.

[64]  A. N. van den Pol,et al.  Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. , 1990, Science.

[65]  C. Diéguez,et al.  Dopamine stimulates release of thyrotrophin-releasing hormone from perfused intact rat hypothalamus via hypothalamic D2-receptors. , 1987, The Journal of endocrinology.

[66]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[67]  L. Swanson,et al.  Neurotransmitter specificity of cells and fibers in the medial preoptic nucleus: An immunohistochentical study in the rat , 1986, The Journal of comparative neurology.

[68]  J. Tuomisto,et al.  Neurotransmitter regulation of anterior pituitary hormones. , 1985, Pharmacological reviews.

[69]  A. Bloom,et al.  The effects of δ9-tetrahydrocannabinol on serum thyrotropin levels in the rat , 1984, Pharmacology Biochemistry and Behavior.

[70]  L. Tapia-Arancibia,et al.  K+-induced thyrotropin-releasing hormone release from superfused mediobasal hypothalami in rats. Inhibition by somatostatin , 1984, Neuroscience Letters.

[71]  Männistö Pt Central regulation of thyrotropin secretion in rats: methodological aspects, problems and some progress. , 1983 .

[72]  J. Palacios,et al.  Effect of neurotransmitters on the in vitro release of immunoreactive thyrotropin-releasing hormone from rat mediobasal hypothalamus. , 1979, Endocrinology.

[73]  S. Suzuki,et al.  Somatostatin inhibits release of thyrotropin releasing factor from organ cultures of rat hypothalamus. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Arshad M. Khan,et al.  Identifying links in the chain: the dynamic coupling of catecholamines, peptide synthesis, and peptide release in hypothalamic neuroendocrine neurons. , 2013, Advances in pharmacology.

[75]  P. Slesinger,et al.  GABAB receptor coupling to G-proteins and ion channels. , 2010, Advances in pharmacology.

[76]  Masahiko Watanabe,et al.  Type 1 cannabinoid receptor-containing axons innervate hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons. , 2009, Endocrinology.

[77]  G. Turi,et al.  Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. , 2005, Endocrinology.

[78]  J. Hagan,et al.  Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity , 2000, Psychopharmacology.

[79]  L. Krulich,et al.  Catecholaminergic regulation of TSH and growth hormone release in ovariectomized and ovariectomized, steroid-primed rats. , 1978, Neuroendocrinology.