Automatic tracing of ultra-volumes of neuronal images

1. Cheng, Y. Cell 161, 450–457 (2015). 2. Kühlbrandt, W. Science 343, 1443–1444 (2014). 3. Brilot, A.F. et al. J. Struct. Biol. 177, 630–637 (2012). 4. Li, X. et al. Nat. Methods 10, 584–590 (2013). 5. Liao, M., Cao, E., Julius, D. & Cheng, Y. Nature 504, 107–112 (2013). 6. Bai, X.C., Fernandez, I.S., McMullan, G. & Scheres, S.H. eLife 2, e00461 (2013). 7. Rubinstein, J.L. & Brubaker, M.A. J. Struct. Biol. 192, 188–195 (2015). 8. Grant, T. & Grigorieff, N. eLife 4, e06980 (2015).

[1]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[4]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[5]  Badrinath Roysam,et al.  3-D Image Pre-processing Algorithms for Improved Automated Tracing of Neuronal Arbors , 2011, Neuroinformatics.

[6]  Eugene W. Myers,et al.  Automated Reconstruction of Neuronal Morphology Based on Local Geometrical and Global Structural Models , 2011, Neuroinformatics.

[7]  Yuan Liu,et al.  The DIADEM and Beyond , 2011, Neuroinformatics.

[8]  Eugene W. Myers,et al.  Automatic 3D neuron tracing using all-path pruning , 2011, Bioinform..

[9]  Ann-Shyn Chiang,et al.  High-throughput Computer Method for 3D Neuronal Structure Reconstruction from the Image Stack of the Drosophila Brain and Its Applications , 2012, PLoS Comput. Biol..

[10]  Hanchuan Peng,et al.  APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree , 2013, Bioinform..

[11]  M. Helmstaedter Cellular-resolution connectomics: challenges of dense neural circuit reconstruction , 2013, Nature Methods.

[12]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[13]  Hanchuan Peng,et al.  Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis , 2014, Nature Communications.

[14]  Qingming Luo,et al.  3D BrainCV: Simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution , 2014, NeuroImage.

[15]  Zhi Zhou,et al.  Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures , 2014, Neuroinformatics.

[16]  Sean L. Hill,et al.  BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images , 2015, Neuron.

[17]  Giorgio A. Ascoli,et al.  Trees of the Brain, Roots of the Mind , 2015 .

[18]  Zhi Zhou,et al.  TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections , 2015, Neuroinformatics.

[19]  Giulio Iannello,et al.  Automated Neuron Tracing Methods: An Updated Account , 2016, Neuroinformatics.

[20]  Zoran Popović,et al.  Power to the People: Addressing Big Data Challenges in Neuroscience by Creating a New Cadre of Citizen Neuroscientists , 2016, Neuron.

[21]  Hang Zhou,et al.  NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites , 2015, Nature Methods.

[22]  Sidong Liu,et al.  Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking , 2016, Neuroinformatics.

[23]  Yanhui Hu,et al.  TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images , 2017 .