A numerical method with particle conservation for the Maxwell-Dirac system
暂无分享,去创建一个
Xiang-Gui Li | C. K. Chan | Y. Hou | C. Chan | Y. Hou | Xiang-Gui Li
[1] Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law , 2007, math-ph/0703018.
[2] V. Delgado. Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension , 1978 .
[3] Maria Psarelli. Maxwell–Dirac Equations in Four-Dimensional Minkowski Space , 2005 .
[4] Nikolaos Bournaveas,et al. Local existence for the Maxwell-Dirac equations in three space dimensions , 1996 .
[5] Weizhu Bao,et al. An efficient and stable numerical method for the Maxwell-Dirac system , 2004 .
[6] Anadijiban Das,et al. General solutions of Maxwell-Dirac equations in 1+1-dimensional space-time and a spatially confined solution , 1993 .
[7] Semiclassical asymptotics for the Maxwell–Dirac system , 2003, math-ph/0305009.
[8] Jie Shen,et al. A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..
[9] A. Lisi. A solitary wave solution of the Maxwell-Dirac equations , 1995 .
[10] Bengt Fornberg,et al. A split step approach for the 3-D Maxwell's equations , 2003 .
[11] Localized solutions of the Dirac-Maxwell equations , 1995, hep-th/9510065.
[12] A. Das. An ongoing big bang model in the special relativistic Maxwell–Dirac equations , 1996 .
[13] K. Nakanishi,et al. Uniqueness of Finite Energy Solutions for Maxwell-Dirac and Maxwell-Klein-Gordon Equations , 2003 .
[14] J. Chadam. Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension , 1973 .
[15] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[16] Chunxiong Zheng,et al. A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.