Impact of the oyster Crassostrea gigas on a microbial community in Atlantic coastal ponds near La Rochelle

To assess the in situ impact of oysters Crassostrea gigas on planktonic protist and bac- teria communities and the potential contribution of protozoa to their food resource intake, the abun- dance and the diversity of protists and bacteria were followed in 2 Atlantic coastal ponds, with and without oysters. The protist biomass in such ponds was high, with a maximum in spring of 982 µg C l -1 and a minimum in winter of 179 µg C l -1 . Whatever the season, the presence of oysters (20 m -2 cor- responding to an average of 23 mg dry weight m -2 ) induced a significant decrease in > 5 µm protist abundance. On the contrary, planktonic organisms 5 µm particles. In spring, oyster grazing triggered dramatic changes in the protist community by lowering the taxo- nomic diversity. In autumn and winter, the presence of oysters deeply influenced the taxonomic structure of the protist communities: > 5 µm protists could only develop in the control pond, whereas they were removed by filtration in the oyster pond; on the contrary, 5 µm were the main protist resource for C. gigas; ciliates represented the second resource, with a substantial contribution in autumn; diatoms and dinoflagellates, though efficiently removed, represented a weak carbon resource. Our study supports the hypothesis that oysters may access the strong bacterioplanktonic production through hetero/mixotrophic protists, which would thus allow the transfer of carbon from the microbial loop towards C. gigas.

[1]  A. Vaquer,et al.  Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon , 2000 .

[2]  J. Robert,et al.  Limiting nutrients of oyster pond seawaters in the Marennes-Oléron region for Haslea ostrearia: applications to the mass production of the diatom in mesocosm experiments , 1999 .

[3]  H. Hartmann,et al.  Retention of ciliates and flagellates by the oyster Crassostrea gigas in French Atlantic coastal ponds: protists as a trophic link between bacterioplankton and benthic suspension-feeders , 1999 .

[4]  J. Levinton,et al.  Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load , 1998 .

[5]  B. Bayne,et al.  Some general relationships in comparing the feeding physiology of suspension-feeding bivalve molluscs , 1998 .

[6]  S. L. Gall,et al.  Ingestion of a bacterivorous ciliate by the oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and benthic suspension-feeders , 1997 .

[7]  P. Goulletquer,et al.  Marine Molluscan Production Trends in France: From Fisheries to Aquaculture , 1997 .

[8]  Kreeger Da,et al.  Ingestion and assimilation of carbon from cellulolytic bacteria and heterotrophic flagellates by the mussels Geukensia demissa and Mytilus edulis (Bivalvia, Mollusca) , 1996 .

[9]  B. Riemann,et al.  Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark , 1996 .

[10]  P. Richard,et al.  Isotopic Determination of Food Sources ofCrassostrea gigasAlong a Trophic Gradient in the Estuarine Bay of Marennes-Ol éron , 1996 .

[11]  P. Truquet,et al.  Feeding responses of Crassostrea gigas (Thunberg) to inclusion of different proportions of toxic dinoflagellates in their diet , 1996 .

[12]  J. Prou,et al.  Particle selection in the oyster Crassostrea gigas (Thunberg) studied by pigment HPLC analysis under natural food conditions , 1996 .

[13]  M. Gosselin,et al.  Significance of planktonic ciliated protozoa in the Lower St. Lawrence Estuary: comparison with bacterial, phytoplankton, and particulate organic carbon , 1995 .

[14]  M. J. Chretiennot-Dinet,et al.  A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae) , 1995 .

[15]  Newell,et al.  Relative importance of different size food particles in the natural diet of oyster larvae Crassostrea virginica , 1995 .

[16]  B. Leadbeater,et al.  The relationship between photoacclimation and phagotrophy with respect to chlorophyll a, carbon and nitrogen content, and cell size of Chrysochromulina brevifilum (Prymnesiophyceae) , 1995 .

[17]  H. Claustre,et al.  Smallest eukaryotic organism , 1994, Nature.

[18]  R. Warwick,et al.  Relearning the ABC: taxonomic changes and abundance/biomass relationships in disturbed benthic communities , 1994 .

[19]  M. Abrioux,et al.  Carbone organique dissous et particulaire de la colonne d'eau et de l'interface eau-sédiment du bassin de Marennes-Oléron: influence des huîtres , 1994 .

[20]  P. Burkill,et al.  A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations , 1994 .

[21]  J. Prou,et al.  No influence of food quality, but ration-dependent retention efficiencies in the Japanese oyster Crassostrea gigas , 1993 .

[22]  Jacques Neveux,et al.  Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique , 1993 .

[23]  L. Aleya,et al.  Predation on ciliates by the suspension-feeding calanoid copepod Acanthodiaptomus denticornis , 1993 .

[24]  D. Dauer,et al.  Abundance biomass comparison (ABC method): effects of an estuarine gradient, anoxic/hypoxic events and contaminated sediments , 1993 .

[25]  D. Klaveness Augmentation of the food supply for oyster larvae via bacterivorous flagellates: possible implications for larval breeding and oyster pond management , 1992 .

[26]  D. Delmas,et al.  Long term microbial community dynamics in a coastal marine pond , 1992 .

[27]  A. C. Brown,et al.  Clearance and retention efficiency of natural suspended particles by the rock-pool bivalve Venerupis corrugatus in relation to tidal availability , 1992 .

[28]  D. Gifford,et al.  The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murukawa , 1991 .

[29]  Daniel J. Repeta,et al.  Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton , 1991 .

[30]  K. Clarke Comparisons of dominance curves , 1990 .

[31]  S. Y. Newell,et al.  Effects of filter-feeding by the ribbed mussel Geukensia demissa on the water-column microbiota of a Spartina alterniflora saltmarsh , 1990 .

[32]  M. Søndergaard,et al.  Carbon budgets of the microbial food web in estuarine enclosures , 1990 .

[33]  D. Delmas,et al.  Nitrogenous nutrient transfers in oyster ponds role of sediment in deferred primary production , 1990 .

[34]  P. Tiselius,et al.  Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates , 1990 .

[35]  D. Stoecker,et al.  An experimentally determined carbon : volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters , 1989 .

[36]  S. Shumway,et al.  The effects of natural seston particle size and type on feeding rates feeding selectivity and food resource availability for the mussel mytilus edulis linnaeus 1758 at bottom culture sites in maine usa , 1989 .

[37]  J. J. Beukema,et al.  An evaluation of the ABC-method (abundance/biomass comparison) as applied to macrozoobenthic communities living on tidal flats in the Dutch Wadden Sea , 1988 .

[38]  H. Riisgård Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves , 1988 .

[39]  D. Razet,et al.  EVOLUTION SAISONNIERE DE LA FILTRATION DE BIVALVES INTERTIDAUX DANS DES CONDITIONS NATURELLES , 1987 .

[40]  D. Razet,et al.  Relations entre la nourriture disponible et la reproduction de mollusques en milieu estuarien : variabilité temporelle de la colonne d'eau , 1987 .

[41]  D. Delmas,et al.  Evolution annuelle et saisonnière de la microbiomasse d'une claire à huîtres: importance des populations bactérioplanctoniques , 1987 .

[42]  M. Chretiennot-Dinet,et al.  Etude de diatomées d'écosystèmes marins côtiers. Observations nouvelles en microscopie électronique , 1987 .

[43]  R. Newell,et al.  Temporal and spatial variations in the composition of seston available to the suspension feeder Crassostrea virginica , 1986 .

[44]  R. Warwick A new method for detecting pollution effects on marine macrobenthic communities , 1986 .

[45]  C. M. Yentsch,et al.  PARTICLE SELECTION, INGESTION, AND ABSORPTION IN FILTER-FEEDING BIVALVES' , 1985 .

[46]  S. Frontier,et al.  Diversity and structure in aquatic ecosystems , 1985 .

[47]  D. Caron Technique for Enumeration of Heterotrophic and Phototrophic Nanoplankton, Using Epifluorescence Microscopy, and Comparison with Other Procedures , 1983, Applied and environmental microbiology.

[48]  A. Aminot,et al.  Manuel des analyses chimiques en milieu marin , 1983 .

[49]  A. J. Underwood,et al.  Techniques of analysis of variance in experimental marine biology and ecology , 1981 .

[50]  Sokal Rr,et al.  Biometry: the principles and practice of statistics in biological research 2nd edition. , 1981 .

[51]  K. Porter,et al.  The use of DAPI for identifying and counting aquatic microflora1 , 1980 .

[52]  Yvon Zanette Intervention de quelques facteurs dans l'évolution de la biomasse des claires de Marennes-Oléron , 1980 .

[53]  M. Pace,et al.  Ciliate protozoans as links in freshwater planktonic food chains , 1979, Nature.

[54]  S. Maestrini,et al.  Estimation, au moyen de tests biologiques, de la fertilité pour trois diatomées des eaux des claires à huîtres de Vendée , 1979 .

[55]  O. Vahl Efficiency of particle retention in Mytilus edulis L. , 1972 .