MIMO Smith predictor: Global and structured robust performance analysis

Abstract The purpose of this work is to extend the analysis of the Smith predictor structure to multiple input multiple output (MIMO) systems with uncertain multiple delays. This is applied to the set of models that can be factorized into a rational MIMO model in series with left/right diagonal (multiple) delay matrices. Necessary and sufficient conditions on the plant’s model to achieve this factorization are proved. This factorized structure is instrumental for the structured robustness analysis and applies to multiple pool open flow canals. Nominal and robust performance and stability are analyzed for the case of plants with multiple uncertain delays for two different uncertainty structures: global dynamic and structured parametric. The first uncertainty structure could also accommodate the dynamic uncertainty of the plant’s rational part as well. This analysis is applied to a controller designed for a two-pool canal system.

[1]  David H. Owens Robust stability of Smith predictor controllers for time-delay systems , 1982 .

[2]  Paul M. Frank Entwurf von Regalkreisen mit vorgeschriebenem Verhalten , 1974 .

[3]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[4]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[5]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[6]  Weining Feng On practical stability of linear multivariable feedback systems with time-delays , 1991, Autom..

[7]  Furong Gao,et al.  Analytical decoupling control strategy using a unity feedback control structure for MIMO processes with time delays , 2007 .

[8]  Zalman J. Palmor,et al.  Stability properties of Smith dead-time compensator controllers , 1980 .

[9]  A. Bhaya,et al.  Controlling plants with delay , 1984, The 23rd IEEE Conference on Decision and Control.

[10]  Carlos E. Garcia,et al.  Internal model control. 2. Design procedure for multivariable systems , 1985 .

[11]  Daniel E. Rivera,et al.  Internal Model Control , 2010, Encyclopedia of Machine Learning.

[12]  L. Mirkin,et al.  H/sup /spl infin// control of systems with multiple I/O delays via decomposition to adobe problems , 2005, IEEE Transactions on Automatic Control.

[13]  Xavier Litrico,et al.  Robust IMC flow control of SIMO dam-river open-channel systems , 2002, IEEE Trans. Control. Syst. Technol..

[14]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[15]  W. H. Ray,et al.  High‐Performance multivariable control strategies for systems having time delays , 1986 .

[16]  William S. Levine,et al.  The Control Handbook , 2010 .

[17]  Zalman J. Palmor,et al.  On the design and properties of multivariable dead time compensators , 1983, Autom..

[18]  L. Mirkin,et al.  H∞ Control of systems with multiple I/O delays* , 2003 .

[19]  Jan M. Maciejowski Robustness of multivariable smith predictors , 1994 .

[20]  Yu Zhang,et al.  Decoupling Smith Predictor Design for Multivariable Systems with Multiple Time Delays , 2000 .

[21]  D. Seborg,et al.  An extension of the Smith Predictor method to multivariable linear systems containing time delays , 1973 .

[22]  Jaroslav Hlava Decoupling anisochronic internal model controllers for MIMO systems with state delays , 2001 .

[23]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[24]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[25]  Babatunde A. Ogunnaike,et al.  Multivariable controller design for linear systems having multiple time delays , 1979 .

[26]  Xavier Litrico,et al.  Simplified modeling of irrigation canals for controller design , 2004 .

[27]  Min-Sen Chiu,et al.  Decoupling internal model control for multivariable systems with multiple time delays , 2002 .