Collaborative Ranking with a Push at the Top

The goal of collaborative filtering is to get accurate recommendations at the top of the list for a set of users. From such a perspective, collaborative ranking based formulations with suitable ranking loss functions are natural. While recent literature has explored the idea based on objective functions such as NDCG or Average Precision, such objectives are difficult to optimize directly. In this paper, building on recent advances from the learning to rank literature, we introduce a novel family of collaborative ranking algorithms which focus on accuracy at the top of the list for each user while learning the ranking functions collaboratively. We consider three specific formulations, based on collaborative p-norm push, infinite push, and reverse-height push, and propose efficient optimization methods for learning these models. Experimental results illustrate the value of collaborative ranking, and show that the proposed methods are competitive, usually better than existing popular approaches to personalized recommendation.

[1]  Suju Rajan,et al.  Beyond clicks: dwell time for personalization , 2014, RecSys '14.

[2]  Yehuda Koren,et al.  Lessons from the Netflix prize challenge , 2007, SKDD.

[3]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[4]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[5]  Yi Chang,et al.  Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.

[6]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[7]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[8]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[9]  Shivani Agarwal,et al.  The Infinite Push: A New Support Vector Ranking Algorithm that Directly Optimizes Accuracy at the Absolute Top of the List , 2011, SDM.

[10]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[11]  Deepak Agarwal,et al.  Content recommendation on web portals , 2013, CACM.

[12]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR Forum.

[13]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[14]  Cynthia Rudin,et al.  The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List , 2009, J. Mach. Learn. Res..

[15]  Samy Bengio,et al.  Local collaborative ranking , 2014, WWW.

[16]  Yehuda Koren,et al.  OrdRec: an ordinal model for predicting personalized item rating distributions , 2011, RecSys '11.

[17]  Suhrid Balakrishnan,et al.  Collaborative ranking , 2012, WSDM '12.

[18]  Arindam Banerjee,et al.  Generalized Probabilistic Matrix Factorizations for Collaborative Filtering , 2010, 2010 IEEE International Conference on Data Mining.

[19]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[20]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[21]  Alain Rakotomamonjy,et al.  Sparse Support Vector Infinite Push , 2012, ICML.

[22]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[23]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[24]  Koby Crammer,et al.  Pranking with Ranking , 2001, NIPS.

[25]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[26]  Manfred K. Warmuth,et al.  Exponentiated Gradient Versus Gradient Descent for Linear Predictors , 1997, Inf. Comput..

[27]  Maksims Volkovs,et al.  Collaborative Ranking With 17 Parameters , 2012, NIPS.

[28]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[29]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[30]  Martha Larson,et al.  xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance , 2013, RecSys.

[31]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[32]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[33]  Martha Larson,et al.  GAPfm: optimal top-n recommendations for graded relevance domains , 2013, CIKM.

[34]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[35]  Martha Larson,et al.  CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering , 2012, RecSys.

[36]  D. Sculley,et al.  Large Scale Learning to Rank , 2009 .

[37]  Stephen P. Boyd,et al.  Accuracy at the Top , 2012, NIPS.

[38]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[39]  Alexander J. Smola,et al.  Direct Optimization of Ranking Measures , 2007, ArXiv.

[40]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.