A Differential Lyapunov Framework for Contraction Analysis

Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves.

[1]  N. Wouw,et al.  Convergent systems : analysis and synthesis , 2005 .

[2]  James S. Muldowney,et al.  On Bendixson′s Criterion , 1993 .

[3]  P. Olver Nonlinear Systems , 2013 .

[4]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[5]  Lorenzo Marconi,et al.  Incremental passivity and output regulation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[6]  A. Rantzer A dual to Lyapunov's stability theorem , 2001 .

[7]  Romeo Ortega,et al.  An adaptive passivity-based controller for a unity power factor rectifier , 2001, IEEE Trans. Control. Syst. Technol..

[8]  N. Wouw,et al.  Stability and Convergence of Mechanical Systems with Unilateral Constraints , 2008 .

[9]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[10]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[11]  Nathan van de Wouw,et al.  Convergent systems vs. incremental stability , 2013, Syst. Control. Lett..

[12]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[13]  Thor I. Fossen,et al.  A Tutorial on Incremental Stability Analysis using Contraction Theory , 2010 .

[14]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[15]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems , 2006 .

[16]  L. Tamâssy Relation between metric spaces and Finsler spaces , 2008 .

[17]  Eduardo Sontag Contractive Systems with Inputs , 2010 .

[18]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[19]  Rodolphe Sepulchre,et al.  On Differentially Dissipative Dynamical Systems , 2013, NOLCOS.

[20]  A. Isidori Nonlinear Control Systems , 1985 .

[21]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[22]  P. Kokotovic,et al.  Constructive Lyapunov stabilization of nonlinear cascade systems , 1996, IEEE Trans. Autom. Control..

[23]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[24]  D. Bao,et al.  An Introduction to Riemann-Finsler Geometry , 2000 .

[25]  Domitilla Del Vecchio,et al.  A Contraction Theory Approach to Singularly Perturbed Systems , 2013, IEEE Transactions on Automatic Control.

[26]  P. Bushell Hilbert's metric and positive contraction mappings in a Banach space , 1973 .

[27]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[28]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[29]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[30]  J. Slotine,et al.  Symmetries, stability, and control in nonlinear systems and networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[32]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[33]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[34]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[35]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[36]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[37]  Rodolphe Sepulchre,et al.  Analysis of Interconnected Oscillators by Dissipativity Theory , 2007, IEEE Transactions on Automatic Control.

[38]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[39]  Arjan van der Schaft,et al.  On differential passivity of physical systems , 2013, 52nd IEEE Conference on Decision and Control.

[40]  Lorenzo Marconi,et al.  Incremental passivity and output regulation , 2006, CDC.

[41]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[42]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[43]  R. A. Smith,et al.  Some applications of Hausdorff dimension inequalities for ordinary differential equations , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[44]  H. Sira-Ramirez,et al.  Passivity-based controllers for the stabilization of DC-to-DC power converters , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[45]  J. Mierczynski A class of strongly cooperative systems without compactness , 1991 .

[46]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[47]  Pierre Rouchon,et al.  Consensus in non-commutative spaces , 2010, 49th IEEE Conference on Decision and Control (CDC).

[48]  James S. Muldowney,et al.  Compound matrices and ordinary differential equations , 1990 .

[49]  David Angeli,et al.  Further Results on Incremental Input-to-State Stability , 2009, IEEE Transactions on Automatic Control.

[50]  Romeo Ortega,et al.  Passivity-based controllers for the stabilization of Dc-to-Dc Power converters , 1997, Autom..

[51]  L. Moreau,et al.  Stability of continuous-time distributed consensus algorithms , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[52]  J. Jouffroy A simple extension of contraction theory to study incremental stability properties , 2003, 2003 European Control Conference (ECC).

[53]  Paulo Tabuada,et al.  Backstepping Design for Incremental Stability , 2010, IEEE Transactions on Automatic Control.

[54]  Janusz Mierczyński,et al.  Cooperative irreducible systems of ordinary differential equations with first integral , 2012, 1208.4697.

[55]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[56]  I. Holopainen Riemannian Geometry , 1927, Nature.