Highly strong and conductive carbon nanotube/cellulose composite paper

Abstract Carbon nanotube (CNT)/cellulose composite materials were fabricated in a paper making process optimized for a CNT network to form on the cellulose fibers. The measured electric conductivity was from 0.05 to 671 S/m for 0.5–16.7 wt.% CNT content, higher than that for other polymer composites. The real permittivities were the highest in the microwave region. The unique CNT network structure is thought to be the reason for these high conductivity and permittivity values. Compared to other carbon materials, our carbon CNT/cellulose composite material had improved parameters without decreased mechanical strength. The near-field electromagnetic shielding effectiveness (EMI SE) measured by a microstrip line method depended on the sheet conductivity and qualitatively matched the results of electromagnetic field simulations using a finite-difference time-domain simulator. A high near-field EMI SE of 50-dB was achieved in the 5–10 GHz frequency region with 4.8 wt.% composite paper. The far-field EMI SE was measured by a free space method. Fairly good agreement was obtained between the measured and calculated results. Approximately 10 wt.% CNT is required to achieve composite paper with 20-dB far-field EMI SE.

[1]  Alan H. Windle,et al.  Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites , 2006 .

[2]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[3]  K. Winey,et al.  Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes , 2008 .

[4]  S. Lefrant,et al.  Electrical and optical properties of PPV and single-walled carbon nanotubes composite films , 2005 .

[5]  Emmanuel Kymakis,et al.  Single-walled carbon nanotube–polymer composites: electrical, optical and structural investigation , 2002 .

[6]  Y. Candau,et al.  Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites , 2008 .

[7]  Hui-Ming Cheng,et al.  Mechanical and electrical properties of a MWNT/epoxy composite , 2002 .

[8]  Christian A. Martin,et al.  Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites , 2004 .

[9]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[10]  T. Ogino,et al.  Production of electrically conductive paper by adding carbon nanotubes , 2008 .

[11]  Jae Whan Cho,et al.  Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites , 2007 .

[12]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[13]  Hongjun Gao,et al.  The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites , 2007 .

[14]  E. Kymakis,et al.  Electrical properties of single-wall carbon nanotube-polymer composite films , 2006 .

[15]  Yongsheng Chen,et al.  Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites , 2007 .

[16]  Lu,et al.  Fullerene pipes , 1998, Science.

[17]  Qing Wang,et al.  The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites , 2008 .

[18]  T. Chou,et al.  Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites , 2006 .

[19]  B. Garnier,et al.  Thermal properties and percolation in carbon nanotube-polymer composites , 2007 .

[20]  Craig A. Grimes,et al.  The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites , 2000 .

[21]  Qing Wang,et al.  Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites , 2007 .

[22]  I. Huynen,et al.  Carbon nanotube composites for broadband microwave absorbing materials , 2006, IEEE Transactions on Microwave Theory and Techniques.

[23]  Ji Liang,et al.  Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites , 2007 .

[24]  Tzong‐Ming Wu,et al.  Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology , 2008 .

[25]  K. Rozanov,et al.  Frequency dependence of effective permittivity of carbon nanotube composites , 2007 .

[26]  Wei Pan,et al.  Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites , 2006 .

[27]  Rajagopal Ramasubramaniam,et al.  Homogeneous carbon nanotube/polymer composites for electrical applications , 2003 .

[28]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[29]  Changxin Chen,et al.  Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films , 2008 .

[30]  Jun-Ho Lee,et al.  Transparent flexible conductor of poly(methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube , 2008 .

[31]  Darren J. Martin,et al.  Polyethylene multiwalled carbon nanotube composites , 2005 .

[32]  E. Sano,et al.  Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper , 2008 .

[33]  K. G. Ong,et al.  Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes , 2001 .

[34]  Changhong Liu,et al.  Highly oriented carbon nanotube papers made of aligned carbon nanotubes , 2008, Nanotechnology.

[35]  L. Francis,et al.  Conductive coatings and composites from latex-based dispersions , 2007 .

[36]  Iosif D. Rosca,et al.  Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling , 2009 .

[37]  Cheng‐Chien Wang,et al.  Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes , 2008 .

[38]  G. J. Fleer,et al.  Statistical theory of the adsorption of interacting chain molecules. II. Train, loop, and tail size distribution , 1980 .

[39]  A. Melezhyk,et al.  Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites , 2007 .

[40]  K. Watson,et al.  Dispersion of single wall carbon nanotubes by in situ polymerization under sonication , 2002 .

[41]  Av Andriy Kyrylyuk,et al.  On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites , 2008 .

[42]  Patrick S. Grant,et al.  Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold , 2009 .

[43]  Guangjun Hu,et al.  Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes , 2006 .

[44]  T. Sterzyński,et al.  Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT) , 2007 .

[45]  T. S. Natarajan,et al.  Microwave Hall mobility studies on polymer-single walled carbon nanotube composite fibers , 2008 .

[46]  W. Brittain,et al.  Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite , 2006 .

[47]  Xili Gao,et al.  Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites , 2008 .

[48]  P. Watts,et al.  The complex permittivity of multi-walled carbon nanotube–polystyrene composite films in X-band , 2003 .

[49]  Haiyan Lin,et al.  Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route , 2007 .

[50]  Lagarkov,et al.  Electromagnetic properties of composites containing elongated conducting inclusions. , 1996, Physical review. B, Condensed matter.

[51]  Y. Show,et al.  Electrically conductive material made from CNT and PTFE , 2008 .

[52]  Qing-Qing Ni,et al.  Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer , 2007 .

[53]  Jang‐Kyo Kim,et al.  Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites , 2007 .

[54]  Masato Kato,et al.  Adsorption behavior of aluminum compounds on pulp fibers at wet-end , 1998, Journal of Wood Science.

[55]  J. Bahr,et al.  Water‐Based Single‐Walled‐Nanotube‐Filled Polymer Composite with an Exceptionally Low Percolation Threshold , 2004 .

[56]  L. Kong,et al.  Tunable effective permittivity of carbon nanotube composites , 2008 .

[57]  L. Bednarz,et al.  Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction , 2008 .

[58]  Ling Bing Kong,et al.  High microwave permittivity of multiwalled carbon nanotube composites , 2004 .

[59]  Lagarkov An,et al.  Electromagnetic properties of composites containing elongated conducting inclusions , 1996 .

[60]  E. Waclawik,et al.  Structure and conductivity of multi-walled carbon nanotube / poly(3-hexylthiophene) composite films , 2007 .

[61]  E. Siochi,et al.  Electrical properties of single wall carbon nanotube reinforced polyimide composites , 2003 .

[62]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[63]  Rémy Dendievel,et al.  Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks , 2006 .

[64]  J. Brooks,et al.  Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes – high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM , 2007 .

[65]  Ji Liang,et al.  The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites , 2008, Nanotechnology.

[66]  J. Kovarova,et al.  Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles , 2008 .

[67]  Pedro Silva,et al.  Photoluminescent single wall carbon nanotube-silica composite gels , 2008 .

[68]  Xing-Wei Sun,et al.  Microwave attenuation of multiwalled carbon nanotube-fused silica composites , 2005 .

[69]  Z. Dang,et al.  Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold , 2007 .

[70]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[71]  Mahn‐Soo Choi,et al.  Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites , 2006 .

[72]  Paolo Ciambelli,et al.  Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites , 2008 .

[73]  K. Schulte,et al.  Two percolation thresholds in carbon nanotube epoxy composites , 2007 .

[74]  Z. Dang,et al.  Carbon nanotube composites with high dielectric constant at low percolation threshold , 2005 .

[75]  Z. Dang,et al.  Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite , 2007 .

[76]  Chuck Zhang,et al.  The high current-carrying capacity of various carbon nanotube-based buckypapers , 2008, Nanotechnology.