SNOMED CT for processing of free text in healthcare: a systematic scoping review (Preprint)

[1]  Sunghwan Sohn,et al.  Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications , 2010, J. Am. Medical Informatics Assoc..

[2]  Nicolette de Keizer,et al.  Forty years of SNOMED: a literature review , 2008, BMC Medical Informatics Decis. Mak..

[3]  D. Moher,et al.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement , 2009, BMJ : British Medical Journal.

[4]  Thusitha De Silva Mabotuwana,et al.  An ontology-based similarity measure for biomedical data - Application to radiology reports , 2013, J. Biomed. Informatics.

[5]  Peter L. Elkin,et al.  Detection of infectious symptoms from VA emergency department and primary care clinical documentation , 2012, Int. J. Medical Informatics.

[6]  Wendy W. Chapman,et al.  A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries , 2001, J. Biomed. Informatics.

[7]  Loes M. M. Braun,et al.  Natural Language Processing in Radiology: A Systematic Review. , 2016, Radiology.

[8]  Ronald Cornet,et al.  Literature review of SNOMED CT use. , 2014, Journal of the American Medical Informatics Association : JAMIA.

[9]  Noémie Elhadad,et al.  A hybrid knowledge-based and data-driven approach to identifying semantically similar concepts , 2012, J. Biomed. Informatics.

[10]  A. Randorff Højen,et al.  SNOMED CT implementation: mapping guidelines facilitating reuse of data , 2012 .

[11]  Patrick Kierkegaard,et al.  E-Prescription across Europe , 2013 .

[12]  Christopher J. Vitale,et al.  Representation of Information about Family Relatives as Structured Data in Electronic Health Records , 2014, Applied Clinical Informatics.

[13]  Daniel L. Rubin,et al.  Comparison of concept recognizers for building the Open Biomedical Annotator , 2009, BMC Bioinformatics.

[14]  Kevin Bretonnel Cohen,et al.  Biomedical Natural Language Processing , 2014 .

[15]  Steven H. Brown,et al.  Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. , 2006, Mayo Clinic proceedings.

[16]  Min Li,et al.  A knowledge discovery and reuse pipeline for information extraction in clinical notes , 2011, J. Am. Medical Informatics Assoc..

[17]  Anthony N. Nguyen,et al.  Symbolic rule-based classification of lung cancer stages from free-text pathology reports , 2010, J. Am. Medical Informatics Assoc..

[18]  Dan Roth,et al.  Extraction of events and temporal expressions from clinical narratives , 2013, J. Biomed. Informatics.

[19]  Dario A. Giuse,et al.  Development and evaluation of RapTAT: A machine learning system for concept mapping of phrases from medical narratives , 2014, J. Biomed. Informatics.

[20]  D. Lindberg,et al.  The Unified Medical Language System , 1993, Methods of Information in Medicine.

[21]  George Hripcsak,et al.  Automated encoding of clinical documents based on natural language processing. , 2004, Journal of the American Medical Informatics Association : JAMIA.

[22]  Shuying Shen,et al.  2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text , 2011, J. Am. Medical Informatics Assoc..

[23]  Younès Bennani,et al.  Semi-structured document categorization with a semantic kernel , 2009, Pattern Recognit..

[24]  George Hripcsak,et al.  Inter-patient distance metrics using SNOMED CT defining relationships , 2006, J. Biomed. Informatics.

[25]  Min Li,et al.  High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge , 2010, J. Am. Medical Informatics Assoc..

[26]  Jana Zvárová,et al.  Measuring diversity in medical reports based on categorized attributes and international classification systems , 2012, BMC Medical Informatics and Decision Making.

[27]  Alan R. Aronson,et al.  An overview of MetaMap: historical perspective and recent advances , 2010, J. Am. Medical Informatics Assoc..

[28]  Dingcheng Li,et al.  Conditional Random Fields and Support Vector Machines for Disorder Named Entity Recognition in Clinical Texts , 2008, BioNLP.

[29]  Anderson Spickard,et al.  Research Paper: "Understanding" Medical School Curriculum Content Using KnowledgeMap , 2003, J. Am. Medical Informatics Assoc..

[30]  Diane L. Seger,et al.  Food entries in a large allergy data repository , 2016, J. Am. Medical Informatics Assoc..

[31]  Sylvie Ratté,et al.  Comparison of MetaMap and cTAKES for entity extraction in clinical notes , 2018, BMC Medical Informatics and Decision Making.

[32]  Kalina Bontcheva,et al.  Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics , 2013, PLoS Comput. Biol..

[33]  Prakash M. Nadkarni,et al.  Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions , 2011, J. Am. Medical Informatics Assoc..