First-principles investigation of the Cu–Ni, Cu–Pd, and Ni–Pd binary alloy systems

Abstract Phase diagrams of copper–nickel–palladium binary alloys were determined by density functional theory cluster expansion method. The system has both magnetic and non-magnetic binaries and subtle phase coexistence areas between similar and different kind of lattice types. Furthermore, the CuPd binary has several ordered structures. Cluster expansion models were constructed by heuristic cluster selection for all of the fcc structures and for the CuPd bcc structure. Both configurational and magnetic phase diagrams were determined. Small amount of nickel magnetize fcc palladium to 0.26 μ B from which the magnetic moment rises almost linearly to that of pure Ni. In CuNi, 0.46 x-Ni is needed for the magnetic transition. In CuPd alloy in 0 K, configurational free energy difference between bcc and fcc lattice resulting to phase separation is only about 1.1 kJ/mol-atoms. Low temperature energetics and magnetic phase diagrams have good quantitative agreement with available experimental and theoretical results. Finite temperature properties of the alloys are in good qualitative agreement with experimental results.

[1]  T. J. Hicks,et al.  Giant Moments in Ni-Cu Alloys Near the Critical Composition , 1969 .

[2]  J. Mitchell,et al.  Solute pairing in solution-hardened Cu-Ni, Cu-Pd binary, and Cu-Ni-Pd ternary fcc alloys , 1992 .

[3]  Y. Murata,et al.  Thermomagnetic Study on Spinodal Decomposition of Ni–Cu–Pd Alloy , 1981 .

[4]  S. Hüfner,et al.  Thermochemical data of alloys from photoelectron spectroscopy , 1981 .

[5]  C. Wolverton First-principles theory of 250 000-atom coherent alloy microstructure , 2000 .

[6]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[8]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[9]  K. P. Gupta The Cu-Ni-Pd (copper-nickel-palladium) system , 2004 .

[10]  Li,et al.  Epitaxial growth of a metastable modification of copper with body-centered-cubic structure. , 1987, Physical review. B, Condensed matter.

[11]  R. Speiser,et al.  The relative thermodynamic properties of solid nickel-palladium alloys☆ , 1965 .

[12]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[13]  M. Turchanin Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper-scandium system , 2006 .

[14]  Changrong Li,et al.  A thermodynamic modeling of the Cu–Pd system , 2008 .

[15]  First-principles investigation of the Ni-Fe-Al system , 2004, cond-mat/0410285.

[16]  D. T. Hawkins,et al.  Selected values of the thermodynamic properties of binary alloys , 1973 .

[17]  A. Neckel,et al.  Computerunterstützte Thermodynamik fester Ni–Pd Legierungen über die Knudsenzellen-Massenspektrometrie und Berechnung des Zustandsdiagrammes , 1992 .

[18]  Y. Z. Wu,et al.  Body-centered-cubic Ni and its magnetic properties. , 2005, Physical review letters.

[19]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[20]  Knut Baumann,et al.  Cross-validation as the objective function for variable-selection techniques , 2003 .

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  Y. Park,et al.  The effect of Cu reflow on the Pd–Cu–Ni ternary alloy membrane fabrication for infinite hydrogen separation , 2008 .

[23]  Aleš Kroupa,et al.  Atlas of Phase Diagrams for Lead-Free Soldering , 2008 .

[24]  H. Claus,et al.  Magnetism in Ni-Cu alloys , 1978 .

[25]  K. Ludwig,et al.  Ordering Kinetics in the Long-Period Superlattice Alloy Cu0.79Pd0.21 , 2005 .

[26]  Zhang,et al.  Use of the Ising model in the study of substitutional alloys. , 1995, Physical review. B, Condensed matter.

[27]  D. Laughlin,et al.  Cu-Pd (Copper-Palladium) , 1991 .

[28]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[29]  Gus L. W. Hart,et al.  Evolutionary approach for determining first-principles hamiltonians , 2005, Nature materials.

[30]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[31]  G. B. Olson,et al.  Thermodynamic modeling of the Pd-X(X= Ag, Co, Fe, Ni) systems , 1999 .

[32]  Atsuto Seko,et al.  Cluster expansion method for multicomponent systems based on optimal selection of structures for density-functional theory calculations , 2009 .

[33]  Gus L. W. Hart,et al.  Reinterpreting the Cu–Pd phase diagram based on new ground-state predictions , 2007 .

[34]  J. Spruiell,et al.  The structure of nickel-palladium solid solutions , 1971 .

[35]  Juan M Sanchez,et al.  Cluster expansion and the configurational theory of alloys , 2010 .