CSP for binary conservative relational structures

We prove that whenever $${\mathbb {A}}$$A is a 3-conservative relational structure with only binary and unary relations, then the algebra of polymorphisms of $${\mathbb {A}}$$A either has no Taylor operation (i.e., CSP($${\mathbb {A}}$$A) is NP-complete), or it generates an SD($${\wedge}$$∧) variety (i.e., CSP($${\mathbb {A}}$$A) has bounded width).

[1]  Pavol Hell,et al.  The dichotomy of list homomorphisms for digraphs , 2011, SODA '11.

[2]  Albert Atserias On digraph coloring problems and treewidth duality , 2008, Eur. J. Comb..

[3]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[4]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[5]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[6]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[7]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[8]  Justin Pearson,et al.  Constraints and universal algebra , 1998, Annals of Mathematics and Artificial Intelligence.

[9]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[10]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[11]  Todd Niven,et al.  On the Reduction of the CSP Dichotomy Conjecture to Digraphs , 2013, CP.

[12]  R. Willard,et al.  Characterizations of several Maltsev conditions , 2015 .

[13]  Andrei A. Bulatov,et al.  Complexity of conservative constraint satisfaction problems , 2011, TOCL.

[14]  Keith A. Kearnes,et al.  The Shape of Congruence Lattices , 2013 .

[15]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..