Analyzing ecological networks of species interactions

Networks provide one of the best representation for ecological communities, composed of many speecies with dense connections between them. Yet the methodological literature allowing one to analyse and extract meaning from ecological networks is dense, fragmented, and unwelcoming. We provide a general overview to the field, outlining both the intent of the different measures, their assumptions, and the contexts in which they can be used. We anchor this discussion in examples from empirical studies, and conclude by highlighting what we think should be the future developments in the field.

[1]  Wilfried Thuiller,et al.  The meaning of functional trait composition of food webs for ecosystem functioning , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  A. Rozenfeld,et al.  The geographic scaling of biotic interactions , 2013 .

[3]  Dominique Gravel,et al.  The dissimilarity of species interaction networks. , 2012, Ecology letters.

[4]  Serge Morand,et al.  Mammal density and patterns of ectoparasite species richness and abundance , 2002, Oecologia.

[5]  Annette Ostling,et al.  Unified spatial scaling of species and their trophic interactions , 2004, Nature.

[6]  R. Holt Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives , 2009, Proceedings of the National Academy of Sciences.

[7]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[8]  R. Guimerà,et al.  Modularity from fluctuations in random graphs and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[10]  Marta Sales-Pardo,et al.  Evolutionary Conservation of Species’ Roles in Food Webs , 2012, Science.

[11]  Jason M. Tylianakis,et al.  Effects of global environmental changes on parasitoid–host food webs and biological control , 2014 .

[12]  Guy Woodward,et al.  From Broadstone to Zackenberg: Space, time and hierarchies in ecological networks , 2010 .

[13]  Lawrence N. Hudson,et al.  Cheddar: analysis and visualisation of ecological communities in R , 2013 .

[14]  J. Bascompte,et al.  Compartmentalization increases food-web persistence , 2011, Proceedings of the National Academy of Sciences.

[15]  D. Post,et al.  The long and short of food-chain length , 2002 .

[16]  Daniel B. Stouffer,et al.  Nestedness versus modularity in ecological networks: two sides of the same coin? , 2010, The Journal of animal ecology.

[17]  Stuart R. Borrett,et al.  The rise of Network Ecology: Maps of the topic diversity and scientific collaboration , 2013, 1311.1785.

[18]  Michiel Stock,et al.  Linear filtering reveals false negatives in species interaction data , 2017, Scientific Reports.

[19]  J. Lawton,et al.  On feeding on more than one trophic level , 1978, Nature.

[20]  S. Valverde,et al.  Statistical structure of host–phage interactions , 2011, Proceedings of the National Academy of Sciences.

[21]  Mercedes Pascual,et al.  The multilayer nature of ecological networks , 2015, Nature Ecology &Evolution.

[22]  Wilfried Thuiller,et al.  Defining and measuring ecological specialization , 2010 .

[23]  Bernard C. Patten,et al.  Systems Approach to the Concept of Environment , 1978 .

[24]  Ferenc Jord,et al.  Network ecology: topological constraints on ecosystem dynamics , 2004 .

[25]  K. Havens,et al.  Scale and Structure in Natural Food Webs , 1992, Science.

[26]  J. E. Cohen,et al.  Trophic links of community food webs. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Jordi Bascompte,et al.  Missing and forbidden links in mutualistic networks , 2011, Proceedings of the Royal Society B: Biological Sciences.

[28]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[29]  Philippe Desjardins-Proulx,et al.  Ecological interactions and the Netflix problem , 2016, bioRxiv.

[30]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[31]  Louis-Félix Bersier,et al.  Sampling effects and the robustness of quantitative and qualitative food-web descriptors. , 2004, Journal of theoretical biology.

[32]  Daniel B. Stouffer,et al.  Evidence for the existence of a robust pattern of prey selection in food webs , 2007, Proceedings of the Royal Society B: Biological Sciences.

[33]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[34]  Daniel B. Stouffer,et al.  Exploring the evolutionary signature of food webs’ backbones using functional traits , 2016 .

[35]  P. Yodzis,et al.  In search of operational trophospecies in a tropical aquatic food web , 1999 .

[36]  Dominique Gravel,et al.  Inferring food web structure from predator–prey body size relationships , 2013 .

[37]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[38]  D. Vázquez,et al.  Evaluating sampling completeness in a desert plant-pollinator network. , 2012, The Journal of animal ecology.

[39]  Stefano Allesina,et al.  Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions? , 2009, PLoS Comput. Biol..

[40]  Brian J. McGill,et al.  A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary , 2014 .

[41]  Luis Santamaría,et al.  Linkage Rules for Plant–Pollinator Networks: Trait Complementarity or Exploitation Barriers? , 2007, PLoS biology.

[42]  Ernesto Estrada,et al.  Using network centrality measures to manage landscape connectivity. , 2008, Ecological applications : a publication of the Ecological Society of America.

[43]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[44]  Louis-Félix Bersier,et al.  QUANTITATIVE DESCRIPTORS OF FOOD-WEB MATRICES , 2002 .

[45]  Mário Almeida-Neto,et al.  A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. , 2015, Ecology letters.

[46]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Dominique Gravel,et al.  The structure of probabilistic networks , 2016 .

[48]  Daniel B. Stouffer,et al.  Species’ roles in food webs show fidelity across a highly variable oak forest , 2015 .

[49]  N. Gotelli Null model analysis of species co-occurrence patterns , 2000 .

[50]  Kristian Trøjelsgaard,et al.  Beta Diversity of Plant-Pollinator Networks and the Spatial Turnover of Pairwise Interactions , 2014, PloS one.

[51]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[52]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[53]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[54]  C. Townsend,et al.  Is resolution the solution?: the effect of taxonomic resolution on the calculated properties of three stream food webs , 2000 .

[55]  Nicolas Loeuille,et al.  The ecological and evolutionary implications of merging different types of networks. , 2011, Ecology letters.

[56]  Neo D. Martinez,et al.  Estimating trophic position in marine and estuarine food webs , 2012 .

[57]  Roger Guimerà,et al.  Cartography of complex networks: modules and universal roles , 2005, Journal of statistical mechanics.

[58]  Theodora Petanidou,et al.  Spatio‐temporal variation in the structure of pollination networks , 2009 .

[59]  R. Paine,et al.  The Pisaster-Tegula Interaction: Prey Patches, Predator Food Preference, and Intertidal Community Structure , 1969 .

[60]  Robert I. McDonald,et al.  Uncertainty in spatially explicit population models , 2008 .

[61]  Dominique Gravel,et al.  When is an ecological network complex? Connectance drives degree distribution and emerging network properties , 2014, PeerJ.

[62]  Grasiela Casas,et al.  Untangling the Tangled Bank: A Novel Method for Partitioning the Effects of Phylogenies and Traits on Ecological Networks , 2017, Evolutionary Biology.

[63]  Sonia Kéfi,et al.  Describe, understand and predict: why do we need networks in ecology? , 2016 .

[64]  Tijana Milenkovic,et al.  Rebuttal to the Letter to the Editor in response to the paper: proper evaluation of alignment‐free network comparison methods , 2017, Bioinform..

[65]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[66]  Pedro Jordano Sampling networks of ecological interactions , 2015 .

[67]  Kevin J. Gaston,et al.  Functional diversity (FD), species richness and community composition , 2002 .

[68]  Neo D. Martinez,et al.  Simple prediction of interaction strengths in complex food webs , 2009, Proceedings of the National Academy of Sciences.

[69]  Benjamin Baiser,et al.  Geographic variation in network structure of a nearctic aquatic food web , 2012 .

[70]  Dominique Gravel,et al.  Synthetic datasets and community tools for the rapid testing of ecological hypotheses , 2015, bioRxiv.

[71]  David Mouillot,et al.  Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: the influence of phylogeny and local environmental conditions , 2004 .

[72]  Nessa E. O'Connor,et al.  Trait-mediated indirect interactions in a marine intertidal system as quantified by functional responses , 2013 .

[73]  Robert K. Colwell,et al.  A new statistical approach for assessing similarity of species composition with incidence and abundance data , 2004 .

[74]  E McDonald-Madden,et al.  Using food-web theory to conserve ecosystems , 2016, Nature Communications.

[75]  Jordi Bascompte,et al.  A neutral‐niche theory of nestedness in mutualistic networks , 2008 .

[76]  L. Amaral,et al.  Quantitative analysis of the local structure of food webs. , 2007, Journal of theoretical biology.

[77]  Dominique Gravel,et al.  A common framework for identifying linkage rules across different types of interactions , 2015, bioRxiv.

[78]  Márcio S. Araújo,et al.  Network analyses support the role of prey preferences in shaping resource use patterns within five animal populations , 2016 .

[79]  Ignasi Bartomeus,et al.  Linking species functional roles to their network roles. , 2016, Ecology letters.

[80]  Jordi Bascompte,et al.  Understanding food-web persistence from local to global scales. , 2010, Ecology letters.

[81]  Neo D. Martinez,et al.  Allometric scaling enhances stability in complex food webs. , 2006, Ecology letters.

[82]  Peter A Abrams,et al.  Modifying modifiers: what happens when interspecific interactions interact? , 2011, The Journal of animal ecology.

[83]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Thilo Gross,et al.  Collapse of an ecological network in Ancient Egypt , 2014, Proceedings of the National Academy of Sciences.

[85]  Marie-Josée Fortin,et al.  From Graphs to Spatial Graphs , 2010 .

[86]  Jordi Bascompte,et al.  SIMPLE TROPHIC MODULES FOR COMPLEX FOOD WEBS , 2005 .

[87]  Stéphane Legendre,et al.  Trophic groups and modules: two levels of group detection in food webs , 2014, Journal of The Royal Society Interface.

[88]  Mark Vellend,et al.  Conceptual Synthesis in Community Ecology , 2010, The Quarterly Review of Biology.

[89]  Jane Memmott,et al.  Global warming and the disruption of plant-pollinator interactions. , 2007, Ecology letters.

[90]  P. Chagnon,et al.  Characterizing topology of ecological networks along gradients: The limits of metrics' standardization , 2015 .

[91]  Bradford A. Hawkins,et al.  EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD-WEB STRUCTURE , 1999 .

[92]  Stefano Allesina,et al.  Food webs: ordering species according to body size yields high degree of intervality. , 2011, Journal of theoretical biology.

[93]  J. Bascompte,et al.  The modularity of pollination networks , 2007, Proceedings of the National Academy of Sciences.

[94]  Carsten F. Dormann,et al.  Introducing the bipartite Package: Analysing Ecological Networks , 2008 .

[95]  Edward B. Baskerville,et al.  Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model , 2010, PLoS Comput. Biol..

[96]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[97]  T. Jonathan Davies,et al.  Phylogenies in Ecology , 2018 .

[98]  Shawn J. Leroux,et al.  Impact of Non-Native Terrestrial Mammals on the Structure of the Terrestrial Mammal Food Web of Newfoundland, Canada , 2014, PloS one.

[99]  Gregory D. Williams,et al.  Spatial distribution of environmental DNA in a nearshore marine habitat , 2017, PeerJ.

[100]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[101]  Gaël Varoquaux,et al.  Proceedings of the 20th Python in Science Conference 2021 (SciPy 2021), Virtual Conference, July 12 - July 18, 2021 , 2008, SciPy.

[102]  Jordi Bascompte,et al.  Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. , 2009, Ecology letters.

[103]  Jennifer A Dunne,et al.  Major dimensions in food-web structure properties. , 2009, Ecology.

[104]  T. Jonathan Davies,et al.  Phylogenies in Ecology: A Guide to Concepts and Methods , 2016 .

[105]  Werner Ulrich,et al.  A consumer's guide to nestedness analysis , 2009 .

[106]  Nicholas J. Gotelli,et al.  SWAP ALGORITHMS IN NULL MODEL ANALYSIS , 2003 .

[107]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[108]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[109]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[110]  L. Freeman,et al.  Centrality in social networks: ii. experimental results☆ , 1979 .

[111]  Sergi Valverde,et al.  Phage-bacteria infection networks. , 2013, Trends in microbiology.

[112]  Jens M. Olesen,et al.  Centrality measures and the importance of generalist species in pollination networks , 2010 .

[113]  Jens M. Olesen,et al.  Spatial structure of an individual-based plant-pollinator network , 2014 .

[114]  Dominique Gravel,et al.  Emergence of Structural Patterns in Neutral Trophic Networks , 2012, PloS one.

[115]  Neo D. Martinez,et al.  Food‐web assembly during a classic biogeographic study: species’“trophic breadth” corresponds to colonization order , 2008 .

[116]  Jonathan J. Borrelli Selection against instability: stable subgraphs are most frequent in empirical food webs , 2015 .

[117]  Neo D. Martinez,et al.  Food webs: reconciling the structure and function of biodiversity. , 2012, Trends in ecology & evolution.

[118]  Owen L. Petchey,et al.  Trophically Unique Species Are Vulnerable to Cascading Extinction , 2008, The American Naturalist.

[119]  D. Earn,et al.  Coherence and conservation. , 2000, Science.

[120]  A. Vázquez,et al.  Network clustering coefficient without degree-correlation biases. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  Werner Ulrich,et al.  Null model analysis of species nestedness patterns. , 2007, Ecology.

[122]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[123]  Douglas A. Landis,et al.  Predicting plant attractiveness to pollinators with passive crowdsourcing , 2016, Royal Society Open Science.

[124]  David Mouillot,et al.  A functional approach reveals community responses to disturbances. , 2013, Trends in ecology & evolution.

[125]  Peter J. Morin,et al.  Community Ecology: Morin/Community Ecology , 2011 .

[126]  Neo D. Martinez Constant Connectance in Community Food Webs , 1992, The American Naturalist.

[127]  R. Ulanowicz An hypothesis on the development of natural communities. , 1980, Journal of theoretical biology.

[128]  J. Timothy Wootton,et al.  Characterizing Species Interactions to Understand Press Perturbations: What Is the Community Matrix? , 2016 .

[129]  Paulo R. Guimarães,et al.  Pleistocene megafaunal interaction networks became more vulnerable after human arrival , 2015, Proceedings of the Royal Society B: Biological Sciences.

[130]  Jordi Bascompte,et al.  Habitat loss and the structure of plant-animal mutualistic networks. , 2006, Ecology letters.

[131]  P. Yodzis,et al.  Body Size and Consumer-Resource Dynamics , 1992, The American Naturalist.

[132]  Catherine Crea,et al.  A new model for ecological networks using species‐level traits , 2016 .

[133]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[134]  Jeremy W. Fox,et al.  Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions , 2015 .

[135]  M. Leibold,et al.  Stability and complexity in model meta-ecosystems , 2016, Nature Communications.

[136]  I. Chades,et al.  General rules for managing and surveying networks of pests, diseases, and endangered species , 2011, Proceedings of the National Academy of Sciences.

[137]  Suh-Ryung Kim,et al.  The Competition Number and its Variants , 1993 .

[138]  Jane Memmott,et al.  Tolerance of pollination networks to species extinctions , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[139]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[140]  L. Amaral,et al.  A robust measure of food web intervality , 2006, Proceedings of the National Academy of Sciences.

[141]  Robert D. Holt,et al.  Food Webs in Space: An Island Biogeographic Perspective , 1996 .

[142]  John Skvoretz,et al.  8. Comparing Networks across Space and Time, Size and Species , 2002 .

[143]  N. Mouquet,et al.  Empirical Evaluation of Neutral Interactions in Host-Parasite Networks , 2014, The American Naturalist.

[144]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[145]  Jordi Bascompte,et al.  The architecture of mutualistic networks minimizes competition and increases biodiversity , 2009, Nature.

[146]  Carsten F. Dormann,et al.  Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations , 2017 .

[147]  Dominique Gravel,et al.  Trophic theory of island biogeography. , 2011, Ecology letters.

[148]  Kevin McCann,et al.  Protecting biostructure , 2007, Nature.

[149]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[150]  Angelo Monteiro,et al.  The interplay between population stability and food-web topology predicts the occurrence of motifs in complex food-webs. , 2016, Journal of theoretical biology.

[151]  Ping Zhu,et al.  A study of graph spectra for comparing graphs and trees , 2008, Pattern Recognit..

[152]  Mikko Kivelä,et al.  Generalizations of the clustering coefficient to weighted complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[153]  Werner Ulrich,et al.  Nestedness analysis as a tool to identify ecological gradients , 2009 .

[154]  E. Todeva Networks , 2007 .

[155]  Paulo R. Guimarães,et al.  On nestedness analyses: rethinking matrix temperature and anti‐nestedness , 2007 .

[156]  Kevin J. Gaston,et al.  Measuring beta diversity for presence–absence data , 2003 .

[157]  Richard J. Williams Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks , 2011, PloS one.

[158]  Jason M. Tylianakis,et al.  Ecological Networks Across Environmental Gradients , 2017 .

[159]  Owen L Petchey,et al.  Size, foraging, and food web structure , 2008, Proceedings of the National Academy of Sciences.

[160]  R. May Food webs. , 1983, Science.

[161]  Jennifer A. Dunne,et al.  The Network Structure of Food Webs , 2005 .

[162]  Daniel B. Stouffer,et al.  The phylogenetic component of food web structure and intervality , 2015, Theoretical Ecology.

[163]  P. Archambault,et al.  No complexity–stability relationship in empirical ecosystems , 2016, Nature Communications.

[164]  D. Vázquez,et al.  The strength of plant-pollinator interactions. , 2012, Ecology.

[165]  Jochen Fründ,et al.  What do interaction network metrics tell us about specialization and biological traits? , 2008, Ecology.

[166]  R. Sokal,et al.  THE COMPARISON OF DENDROGRAMS BY OBJECTIVE METHODS , 1962 .

[167]  David C. Bell,et al.  Centrality measures for disease transmission networks , 1999, Soc. Networks.

[168]  S. Valverde,et al.  Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages , 2012, The ISME Journal.

[169]  P. Legendre,et al.  A distance-based framework for measuring functional diversity from multiple traits. , 2010, Ecology.

[170]  Chris Mungall,et al.  Global biotic interactions: An open infrastructure to share and analyze species-interaction datasets , 2014, Ecol. Informatics.

[171]  Tsuyoshi Murata,et al.  Community Detection in Large-Scale Bipartite Networks , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[172]  Michael P. H. Stumpf,et al.  Statistical analysis of network data and evolution on GPUs: High-performance statistical computing , 2012 .

[173]  Brody Sandel,et al.  Historical climate‐change influences modularity and nestedness of pollination networks , 2013 .

[174]  Dominique Gravel,et al.  Beyond species: why ecological interaction networks vary through space and time , 2014, bioRxiv.

[175]  Miguel A. Rodríguez-Gironés,et al.  A new algorithm to calculate the nestedness temperature of presence–absence matrices , 2006 .

[176]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[177]  Dominique Gravel,et al.  A theory for species co-occurrence in interaction networks , 2015, Theoretical Ecology.

[178]  Márcio S Araújo,et al.  Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. , 2008, Ecology.

[179]  Miguel B. Araújo,et al.  Using species co-occurrence networks to assess the impacts of climate change , 2011 .

[180]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[181]  S. Strogatz Exploring complex networks , 2001, Nature.

[182]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[183]  Charles C. Elton Animal Ecology , 1927, Nature.

[184]  Michael J. O. Pocock,et al.  Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems , 2016 .

[185]  Sonia Kéfi,et al.  More than a meal… integrating non-feeding interactions into food webs. , 2012, Ecology letters.

[186]  Dominique Gravel,et al.  mangal - making ecological network analysis simple , 2014, bioRxiv.

[187]  Werner Ulrich,et al.  Consumer-resource body-size relationships in natural food webs. , 2006, Ecology.

[188]  R. Solé,et al.  Ecological networks and their fragility , 2006, Nature.

[189]  Sergi Valverde,et al.  BiMat: a MATLAB package to facilitate the analysis of bipartite networks , 2016 .

[190]  Jens M. Olesen,et al.  Ecological networks in motion: Micro- and macroscopic variability across scales , 2016 .

[191]  Kenneth D. Angielczyk,et al.  The evolutionary palaeoecology of species and the tragedy of the commons , 2012, Biology Letters.

[192]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[193]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[194]  Stefano Allesina,et al.  Network structure , predator-prey modules , and stability in large food webs : Electronic Supplementary Material ( ESM ) , 2007 .

[195]  Stefano Allesina,et al.  The dimensionality of ecological networks. , 2013, Ecology letters.

[196]  Ignasi Bartomeus,et al.  Understanding Linkage Rules in Plant-Pollinator Networks by Using Hierarchical Models That Incorporate Pollinator Detectability and Plant Traits , 2013, PloS one.

[197]  Pedro Jordano,et al.  Geographical variation in mutualistic networks: similarity, turnover and partner fidelity , 2015, Proceedings of the Royal Society B: Biological Sciences.

[198]  Lauren C Ponisio,et al.  Opportunistic attachment assembles plant-pollinator networks. , 2017, Ecology letters.

[199]  V. Brown,et al.  Multitrophic Interactions in Terrestrial Systems , 1997 .

[200]  Stefano Allesina,et al.  The ghost of nestedness in ecological networks , 2013, Nature Communications.

[201]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[202]  Jens M. Olesen,et al.  Scaling down from species to individuals: a flower–visitation network between individual honeybees and thistle plants , 2011 .

[203]  Neo D. Martinez,et al.  Effects of trophic similarity on community composition. , 2014, Ecology letters.

[204]  Carlos J. Melián,et al.  Individual Trait Variation and Diversity in Food Webs , 2014 .

[205]  Teja Tscharntke,et al.  Habitat modification alters the structure of tropical host–parasitoid food webs , 2007, Nature.

[206]  Peter Chesson,et al.  The interaction between predation and competition , 2008, Nature.

[207]  C. Violle,et al.  Let the concept of trait be functional , 2007 .

[208]  Rodrigo Ramos-Jiliberto,et al.  Topological plasticity increases robustness of mutualistic networks. , 2012, The Journal of animal ecology.

[209]  Robert Poulin,et al.  Network analysis shining light on parasite ecology and diversity. , 2010, Trends in parasitology.