The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C.

[1]  J. Carucci,et al.  Myeloid dendritic cells from human cutaneous squamous cell carcinoma are poor stimulators of T-cell proliferation. , 2009, The Journal of investigative dermatology.

[2]  Y. Chae,et al.  Prognostic significance of vascular endothelial growth factor‐C expression and lymphatic vessel density in supraglottic squamous cell carcinoma , 2009, The Laryngoscope.

[3]  M. Detmar,et al.  Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions. , 2009, Experimental cell research.

[4]  K. Alitalo,et al.  Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. , 2009, Blood.

[5]  K. Hörmann,et al.  Lymphatic vessel density in correlation to lymph node metastasis in head and neck squamous cell carcinoma. , 2009, Anticancer research.

[6]  Y. Inoue,et al.  VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node metastasis in oral squamous cell carcinoma: Implications for use as a prognostic marker , 2009 .

[7]  M. Kuwano,et al.  Role of macrophages in inflammatory lymphangiogenesis: Enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. , 2008, Biochemical and biophysical research communications.

[8]  D. Bacquer,et al.  The role of VEGF-C staining in predicting regional metastasis in melanoma , 2006, Virchows Archiv.

[9]  F. Peale,et al.  Blocking neuropilin-2 function inhibits tumor cell metastasis. , 2008, Cancer cell.

[10]  D. Kerjaschki,et al.  A previously unknown dermal blood vessel phenotype in skin inflammation. , 2007, The Journal of investigative dermatology.

[11]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[12]  R. Steinman,et al.  Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. , 2007, The Journal of clinical investigation.

[13]  A. Weinberg,et al.  Metastatic Cutaneous Squamous Cell Carcinoma: An Update , 2007, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[14]  K. Alitalo,et al.  VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. , 2007, Blood.

[15]  G. Neufeld,et al.  Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. , 2006, Blood.

[16]  C. Palme,et al.  High‐risk cutaneous squamous cell carcinoma of the head and neck , 2006, Cancer.

[17]  J. Ott,et al.  Genomic analysis defines a cancer-specific gene expression signature for human squamous cell carcinoma and distinguishes malignant hyperproliferation from benign hyperplasia. , 2006, The Journal of investigative dermatology.

[18]  P. Heikkilä,et al.  High LYVE-1–Positive Lymphatic Vessel Numbers Are Associated with Poor Outcome in Breast Cancer , 2004, Clinical Cancer Research.

[19]  M. Rosenkilde,et al.  The chemokine system – a major regulator of angiogenesis in health and disease , 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[20]  Jingtai Cao,et al.  VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. , 2004, The Journal of clinical investigation.

[21]  M. Dana,et al.  Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. , 2003, The American journal of pathology.

[22]  M. Karkkainen,et al.  Abnormal lymphatic vessel development in neuropilin 2 mutant mice. , 2002, Development.

[23]  K. Alitalo,et al.  Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. , 2002, The American journal of pathology.

[24]  M. Karkkainen,et al.  Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. , 2001, Cancer research.

[25]  K. Alitalo,et al.  VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. , 2000, Blood.

[26]  Y Sakai,et al.  HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis , 2022 .

[27]  G. Oliver,et al.  Prox1 Function Is Required for the Development of the Murine Lymphatic System , 1999, Cell.

[28]  D. Jackson,et al.  LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan , 1999, The Journal of cell biology.

[29]  K. Alitalo,et al.  Vascular endothelial growth factor C induces angiogenesis in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  K. Alitalo,et al.  A novel vascular endothelial growth factor, VEGF‐C, is a ligand for the Flt4 (VEGFR‐3) and KDR (VEGFR‐2) receptor tyrosine kinases. , 1996, The EMBO journal.