Modelling volatility by variance decomposition

In this paper, we propose two parametric alternatives to the standard GJR-GARCH model of Glosten et al. (1993), based on additive and multiplicative decompositions of the variance. They allow the variance of the model to have a smooth time-varying structure. The suggested parameterizations describe structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decomposition of the variance into an unconditional and conditional components. Estimation of the multiplicative model is discussed in detail. An empirical application to daily stock returns illustrates the functioning of the model. The results show that the ‘long memory type behaviour’ of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance.

[1]  Richard T. Baillie,et al.  Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach , 2009, ICER 2007.

[2]  S. Bellegem Locally stationary volatility modelling , 2011 .

[3]  Timo Teräsvirta,et al.  Testing the adequacy of smooth transition autoregressive models , 1996 .

[4]  P. Jensen,et al.  Estimating the effect of a variable in a high-dimensional regression model , 2010 .

[5]  Peter Reinhard Hansen,et al.  REALIZED BETA GARCH: A MULTIVARIATE GARCH MODEL WITH REALIZED MEASURES OF VOLATILITY , 2012 .

[6]  A. I. McLeod,et al.  DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .

[7]  O. Straume,et al.  North-South Technology Transfer in Unionised Multinationals , 2010, SSRN Electronic Journal.

[8]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[9]  Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility , 2009 .

[10]  S. Johansen The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration , 2010 .

[11]  Enrique Sentana Quadratic Arch Models , 1995 .

[12]  Rainer von Sachs,et al.  Forecasting economic time series with unconditional time-varying variance , 2004 .

[13]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[14]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[15]  Kurt R. Brekke,et al.  Margins and Market Shares: Pharmacy Incentives for Generic Substitution , 2010, SSRN Electronic Journal.

[16]  H. White,et al.  On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index , 2003 .

[17]  João Cerejeira,et al.  Employment, Exchange Rates and Labour Market Rigidity , 2010, SSRN Electronic Journal.

[18]  Timo Teräsvirta,et al.  Modelling nonlinear economic time series , 2010 .

[19]  Anders Rahbek,et al.  TESTING AND INFERENCE IN NONLINEAR COINTEGRATING VECTOR ERROR CORRECTION MODELS , 2010, Econometric Theory.

[20]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[21]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[22]  Francis X. Dieobold Modeling The persistence Of Conditional Variances: A Comment , 1986 .

[23]  Maria Joana Soares,et al.  Business Cycle Synchronization and the Euro: a Wavelet Analysis ∗ , 2011 .

[24]  Jun Cai A Markov Model of Switching-Regime ARCH , 1994 .

[25]  P. Saikkonen,et al.  Parameter Estimation in Nonlinear AR-GARCH Models , 2011 .

[26]  T. Teräsvirta,et al.  Stylized facts of return series, robust estimates and three popular models of volatility , 2011 .

[27]  C. Sá,et al.  Minimum Wage, Fringe Benefits, Overtime Payments and the Gender Wage Gap , 2012, SSRN Electronic Journal.

[28]  L. Martins,et al.  Cointegration tests under multiple regime shifts: An application to the stock price–dividend relationship , 2011 .

[29]  Timo Teräsvirta,et al.  An Introduction to Univariate GARCH Models , 2006 .

[30]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[31]  N. Shephard,et al.  Integer-valued Lévy processes and low latency financial econometrics , 2012 .

[32]  James G. MacKinnon,et al.  Graphical Methods for Investigating the Size and Power of Hypothesis Tests , 1998 .

[33]  Tim Bollerslev,et al.  Supplementary Appendix to : “ Jump Tails , Extreme Dependencies , and the Distribution of Stock Returns ” ∗ , 2011 .

[34]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[35]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[36]  Jurgen A. Doornik,et al.  Object-orientd matrix programming using OX , 1996 .

[37]  R. Dahlhaus,et al.  Statistical inference for time-varying ARCH processes , 2006, math/0607799.

[38]  Aman Ullah,et al.  Semiparametric Estimator of Time Series Conditional Variance , 2010 .

[39]  James Davidson,et al.  Implementing the wild bootstrap using a two-point distribution☆ , 2007 .

[40]  Gabriele Fiorentini,et al.  Analytic Derivatives and the Computation of Garch Estimates , 1996 .

[41]  How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps , 2011 .

[42]  NEW HYBRID MODELS OF MULTIVARIATE VOLATILITY (A BAYESIAN PERSPECTIVE) , 2009 .

[43]  Timo Teräsvirta,et al.  Testing the constancy of regression parameters against continuous structural change , 1994 .

[44]  L. Martins,et al.  The Cost Channel Reconsidered: A Comment Using an Identification‐Robust Approach , 2010 .

[45]  T. Teräsvirta Nonlinear models for autoregressive conditional heteroskedasticity , 2011 .

[46]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[47]  W. Li,et al.  On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity , 1994 .

[48]  Giampiero M. Gallo,et al.  Comparison of Volatility Measures: A Risk Management Perspective , 2009 .

[49]  A. Ronald Gallant,et al.  The Fourier Flexible Form , 1984 .

[50]  Thomas Mikosch,et al.  Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach , 2006 .

[51]  Piotr Kokoszka,et al.  SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS , 2004, Econometric Theory.

[52]  R. Engle,et al.  The Spline-Garch Model for Low Frequency Volatility and its Global Macroeconomic Causes , 2006 .

[53]  T. Teräsvirta,et al.  Evaluating GARCH models , 2002 .

[54]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[55]  Timo Teräsvirta,et al.  Conditional Correlation Models of Autoregressive Conditional Heteroscedasticity With Nonstationary GARCH Equations , 2014 .