Asymptotic optimality of the Westfall--Young permutation procedure for multiple testing under dependence

Test statistics are often strongly dependent in large-scale multiple testing applications. Most corrections for multiplicity are unduly conservative for correlated test statistics, resulting in a loss of power to detect true positives. We show that the Westfall--Young permutation method has asymptotically optimal power for a broad class of testing problems with a block-dependence and sparsity structure among the tests, when the number of tests tends to infinity.

[1]  James F Troendle,et al.  Multiple Testing with Minimal Assumptions , 2008, Biometrical journal. Biometrische Zeitschrift.

[2]  B. Efron Correlation and Large-Scale Simultaneous Significance Testing , 2007 .

[3]  L. Kruglyak Prospects for whole-genome linkage disequilibrium mapping of common disease genes , 1999, Nature Genetics.

[4]  P. Donnelly,et al.  Genome-wide strategies for detecting multiple loci that influence complex diseases , 2005, Nature Genetics.

[5]  Joshua T. Burdick,et al.  Mapping determinants of human gene expression by regional and genome-wide association , 2005, Nature.

[6]  J. Goeman,et al.  The Sequential Rejection Principle of Familywise Error Control , 2010, 1211.3313.

[7]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[8]  L. Wasserman,et al.  False discovery control with p-value weighting , 2006 .

[9]  Larry Wasserman,et al.  Genome-Wide Significance Levels and Weighted Hypothesis Testing. , 2009, Statistical science : a review journal of the Institute of Mathematical Statistics.

[10]  S. Dudoit,et al.  Multiple Testing Procedures with Applications to Genomics , 2007 .

[11]  Joseph P. Romano,et al.  Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing , 2003 .

[12]  M. Daly,et al.  Genome-wide association studies for common diseases and complex traits , 2005, Nature Reviews Genetics.

[13]  S. Young,et al.  p Value Adjustments for Multiple Tests in Multivariate Binomial Models , 1989 .

[14]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[15]  Yongchao Ge Resampling-based Multiple Testing for Microarray Data Analysis , 2003 .

[16]  P. Hall,et al.  Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.

[17]  A. Levine,et al.  A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. , 2005, Cancer research.

[18]  Charles Alcock,et al.  Statistical Methods for Detecting Stellar Occultations by Kuiper Belt Objects: The Taiwanese–American Occultation Survey , 2002, astro-ph/0209509.

[19]  P. Hall,et al.  Robustness of multiple testing procedures against dependence , 2009, 0903.0464.

[20]  P. Hall,et al.  PROPERTIES OF HIGHER CRITICISM UNDER STRONG DEPENDENCE , 2008, 0803.2095.

[21]  Gilles Blanchard,et al.  Adaptive False Discovery Rate Control under Independence and Dependence , 2009, J. Mach. Learn. Res..

[22]  Markus Neuhäuser,et al.  Permutation Tests , 2011, International Encyclopedia of Statistical Science.

[23]  S. Dudoit,et al.  Multiple Hypothesis Testing in Microarray Experiments , 2003 .

[24]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[25]  Y. Benjamini,et al.  Adaptive linear step-up procedures that control the false discovery rate , 2006 .

[26]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[27]  Wenguang Sun,et al.  Large‐scale multiple testing under dependence , 2009 .

[28]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[29]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[30]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[31]  Nicolai Meinshausen,et al.  False Discovery Control for Multiple Tests of Association Under General Dependence , 2006 .

[32]  N. Meinshausen,et al.  Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses , 2005, math/0501289.

[33]  B. Ponder,et al.  Effect of germ-line genetic variation on breast cancer survival in a population-based study. , 2002, Cancer research.

[34]  Christian Gieger,et al.  Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions , 2007, Nature Genetics.

[35]  Michael Knapp,et al.  A powerful strategy to account for multiple testing in the context of haplotype analysis. , 2004, American journal of human genetics.

[36]  S. Dudoit,et al.  Resampling-based multiple testing for microarray data analysis , 2003 .

[37]  Dmitri V Zaykin,et al.  Multiple tests for genetic effects in association studies. , 2002, Methods in molecular biology.

[38]  John Ludbrook,et al.  Why Permutation Tests are Superior to t and F Tests in Biomedical Research , 1998 .