Stress‐Driven Surface Topography Evolution in Nanocrystalline Al Thin Films

Stress-assisted grain growth at room temperature is identified as a plastic deformation mechanism in nanocrystalline thin films. Unique surface relief is attributed to the direct application of stress-coupled grain boundary migration theory. The figure shows a false-color SEM image of surface topography and an AFM height profile as a result of stress-assisted grain growth. A strategy for tailoring the mechanical properties of nanostructured metals is shown.

[1]  Choh Hao Li,et al.  RECENT OBSERVATIONS ON THE MOTION OF SMALL ANGLE DISLOCATION BOUNDARIES , 1954 .

[2]  C. Koch,et al.  Thermal Stability of Nanocrystalline Materials , 1996 .

[3]  B. Bhushan,et al.  Nanoindentation, microscratch, friction and wear studies of coatings for contact recording applications , 1995 .

[4]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .

[5]  Akira Suzuki,et al.  Coupling grain boundary motion to shear deformation , 2006 .

[6]  W. Mullins Theory of Thermal Grooving , 1957 .

[7]  J. Molinari,et al.  Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al , 2006 .

[8]  G. Gottstein,et al.  On the mechanisms of grain boundary migration , 2002 .

[9]  Marc Legros,et al.  Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films , 2006 .

[10]  Subra Suresh,et al.  Grain size effects on the fatigue response of nanocrystalline metals , 2003 .

[11]  G. J. Fan,et al.  Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation , 2006 .

[12]  B. Bhushan,et al.  Atomic-Scale Friction Measurements Using Friction Force Microscopy. Part 1. General Principles and New Measurement Techniques , 1994 .

[13]  H. V. Swygenhoven,et al.  Grain boundary migration during room temperature deformation of nanocrystalline Ni , 2006 .

[14]  W. E. Buhro,et al.  Kinetic Instability of Nanocrystalline Aluminum Prepared by Chemical Synthesis; Facile Room-Temperature Grain Growth , 1998 .

[15]  S. Suresh,et al.  Fatigue behavior of nanocrystalline metals and alloys , 2005 .

[16]  A. Rollett,et al.  Formation of mesoscale roughening in 6022-T4 Al sheets deformed in plane-strain tension , 2004 .

[17]  W. Carter,et al.  Simultaneous grain boundary migration and grain rotation , 2006 .

[18]  T. Haubold,et al.  Atomic structure and thermal stability of nanostructured Y-Fe alloys , 1992 .

[19]  Z. Zhao,et al.  A study of surface roughening in fcc metals using direct numerical simulation , 2004 .

[20]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[21]  Liang Zuo,et al.  Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20Kto473K , 2005 .

[22]  E. Parker,et al.  Stress-induced movement of crystal boundaries , 1953 .

[23]  S. Phillpot,et al.  Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation , 2003 .

[24]  S. Phillpot,et al.  Combined atomistic and mesoscale simulation of grain growth in nanocrystalline thin films , 2002 .

[25]  A. Llebaria,et al.  Roughness spectrum and surface plasmons for surfaces of silver, copper, gold, and magnesium deposits , 1983 .

[26]  Andrew M. Minor,et al.  Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature , 2004 .

[27]  R. Selvam,et al.  Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants , 2006 .

[28]  Kai Zhang,et al.  The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper , 2004 .

[29]  Richard E. Thompson,et al.  Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing , 2006 .

[30]  Jean-François Molinari,et al.  Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study , 2005 .

[31]  S. Phillpot,et al.  Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. , 2001 .

[32]  B. Bhushan,et al.  Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces , 1990 .

[33]  G. Gottstein,et al.  Stress induced grain boundary motion , 2001 .

[34]  Xin Zhang Statefinder diagnostic for coupled quintessence , 2005 .

[35]  L. Zepeda-Ruiz,et al.  Atomistic simulations of grain boundary pinning in CuFe alloys , 2005 .

[36]  R. Birringer,et al.  On the room-temperature grain growth in nanocrystalline copper , 1994 .

[37]  J. Taylor,et al.  A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation , 2004 .

[38]  M. Winning Grain growth under the influence of mechanical stresses , 2005 .

[39]  L. Hector,et al.  In-situ surface characterization of a binary aluminum alloy during tensile deformation , 1997 .

[40]  A. Rollett,et al.  Transition between low and high angle grain boundaries , 2005 .

[41]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[42]  C. Koch,et al.  Nanocrystalline materials – Current research and future directions , 2000 .

[43]  J. Cahn,et al.  Duality of dislocation content of grain boundaries , 2006 .

[44]  B. Günther,et al.  Secondary recrystallization effects in nanostructured elemental metals , 1992 .

[45]  H. V. Swygenhoven,et al.  Deformation in nanocrystalline metals , 2006 .

[46]  A. Minor,et al.  In situ studies of the transmission of strain across grain boundaries , 2007 .