Skinning and blending with rational envelope surfaces

We continue the study of rational envelope (RE) surfaces. Although these surfaces are parametrized with the help of square roots, when considering an RE patch as the medial surface transform in 4D of a spatial domain it yields a rational parametrization of the domains boundary, i.e.,the envelope of the corresponding 2-parameter family of spheres. We formulate efficient algorithms for G1 data interpolation using RE surfaces and apply the developed methods to rational skinning and blending of sets of spheres and cones/cylinders, respectively. Our results are demonstrated on several computed examples of skins and blends with rational parametrizations. We continue the study of rational envelope (RE) surfaces.We formulate efficient algorithms for G1 data interpolation using RE surfaces.We apply RE surfaces to rational skinning and blending.

[1]  Miklós Hoffmann,et al.  Skinning of circles and spheres , 2010, Comput. Aided Geom. Des..

[2]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[3]  Jirí Kosinka,et al.  A unified Pythagorean hodograph approach to the medial axis transform and offset approximation , 2011, J. Comput. Appl. Math..

[4]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[5]  Tamás Várady,et al.  A Multi‐sided Bézier Patch with a Simple Control Structure , 2016, Comput. Graph. Forum.

[6]  Josef Schicho,et al.  The Parametrization of Canal Surfaces and the Decomposition of Polynomials into a Sum of Two Squares , 2001, J. Symb. Comput..

[7]  Miroslav Lávicka,et al.  Parameterizing rational offset canal surfaces via rational contour curves , 2013, Comput. Aided Des..

[8]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[9]  Semyon Tsynkov,et al.  A Theoretical Introduction to Numerical Analysis , 2006 .

[10]  Ming C. Lin,et al.  Example-guided physically based modal sound synthesis , 2013, ACM Trans. Graph..

[11]  Paul A. Yushkevich,et al.  Continuous medial representations for geometric object modeling in 2D and 3D , 2003, Image Vis. Comput..

[12]  Hendrik Speleers Interpolation with quintic Powell-Sabin splines , 2012 .

[13]  Peter Alfeld,et al.  A bivariate C2 Clough-Tocher scheme , 1984, Comput. Aided Geom. Des..

[14]  Helmut Pottmann,et al.  Computing Rational Parametrizations of Canal Surfaces , 1997, J. Symb. Comput..

[15]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[16]  Jarek Rossignac,et al.  3D ball skinning using PDEs for generation of smooth tubular surfaces , 2010, Comput. Aided Des..

[17]  Caiming Zhang,et al.  Q-MAT , 2015, ACM Trans. Graph..

[18]  Bert Jüttler,et al.  Blends of canal surfaces from polyhedral medial transform representations , 2011, Comput. Aided Des..

[19]  Ron Goldman,et al.  Understanding quaternions , 2011, Graph. Model..

[20]  Bert Jüttler,et al.  On the Parameterization of Rational Ringed Surfaces and Rational Canal Surfaces , 2014, Math. Comput. Sci..

[21]  Miroslav Lávicka,et al.  On modeling with rational ringed surfaces , 2015, Comput. Aided Des..

[22]  Helmut Pottmann,et al.  Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..

[23]  Thomas J. Cashman,et al.  Watertight conversion of trimmed CAD surfaces to Clough-Tocher splines , 2015, Comput. Aided Geom. Des..

[24]  Shi-Min Hu,et al.  Cubic mean value coordinates , 2013, ACM Trans. Graph..

[25]  Miklós Hoffmann,et al.  KSpheres - an efficient algorithm for joining skinning surfaces , 2014, Comput. Aided Geom. Des..

[26]  Miroslav Lávicka,et al.  A symbolic-numerical method for computing approximate parameterizations of canal surfaces , 2012, Comput. Aided Des..

[27]  R. W. Daniels An introduction to numerical methods and optimization techniques , 1978 .

[28]  Jirí Kosinka,et al.  On rational Minkowski Pythagorean hodograph curves , 2010, Comput. Aided Geom. Des..

[29]  Bohumír Bastl,et al.  Simple and branched skins of systems of circles and convex shapes , 2015, Graph. Model..

[30]  Tianjun Wang,et al.  A C2-quintic spline interpolation scheme on triangulation , 1992, Comput. Aided Geom. Des..

[31]  Bert Jüttler,et al.  MOS Surfaces: Medial Surface Transforms with Rational Domain Boundaries , 2007, IMA Conference on the Mathematics of Surfaces.

[32]  Michal Bizzarri,et al.  Medial axis transforms yielding rational envelopes , 2016, Comput. Aided Geom. Des..

[33]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[34]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[35]  Hwan Pyo Moon Minkowski Pythagorean hodographs , 1999, Comput. Aided Geom. Des..