Two-step Runge-Kutta Methods with Quadratic Stability Functions

We describe the construction of implicit two-step Runge-Kutta methods with stability properties determined by quadratic stability functions. We will aim for methods which are A-stable and L-stable and such that the coefficients matrix has a one point spectrum. Examples of methods of order up to eight are provided.

[1]  Kevin Burrage,et al.  An implementation of singly-implicit Runge-Kutta methods , 1980 .

[2]  John C. Butcher,et al.  Order conditions for two-step Runge-Kutta methods , 1997 .

[3]  Zdzislaw Jackiewicz,et al.  Derivation of continuous explicit two-step Runge-Kutta methods of order three , 2007 .

[4]  Z. Jackiewicz,et al.  Derivation and implementation of Two-Step Runge-Kutta pairs , 2002 .

[5]  S. Tracogna Implementation of two-step Runge-Kutta methods for ordinary differential equations , 1996 .

[6]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[7]  Ernst Hairer,et al.  Order Conditions for General Two-Step Runge--Kutta Methods , 1997 .

[8]  John C. Butcher,et al.  Applications of doubly companion matrices , 2006 .

[9]  John C. Butcher,et al.  General linear methods for ordinary differential equations , 2009, Math. Comput. Simul..

[10]  J. Butcher,et al.  A transformation relating explicit and diagonally-implicit general linear methods , 2003 .

[11]  Zdzislaw Jackiewicz,et al.  Accurate Implicit–Explicit General Linear Methods with Inherent Runge–Kutta Stability , 2009, Journal of Scientific Computing.

[12]  Zdzislaw Jackiewicz,et al.  Construction of two-step Runge-Kutta methods of high order for ordinary differential equations , 2004, Numerical Algorithms.

[13]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[14]  Zdzislaw Jackiewicz,et al.  A general class of two-step Runge-Kutta methods for ordinary differential equations , 1995 .

[15]  W. M. Wright,et al.  Explicit General Linear Methods with Inherent Runge–Kutta Stability , 2002, Numerical Algorithms.

[16]  Zdzisław Jackiewicz,et al.  General Linear Methods for Ordinary Differential Equations: Jackiewicz/General Linear , 2009 .

[17]  A. Bellen,et al.  Local error estimation for singly-implicit formulas by two-step Runge-Kutta methods , 1992 .

[18]  Zdzislaw Jackiewicz,et al.  Variable stepsize continuous two-step Runge-Kutta methods for ordinary differential equations , 1996, Numerical Algorithms.

[19]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[20]  R. D'Ambrosio,et al.  Highly stable two step collocation methods for stiff differential systems , 2009 .

[21]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[22]  John C. Butcher,et al.  The Construction of Practical General Linear Methods , 2003 .

[23]  Z. Jackiewicz,et al.  Construction of two-step Runge--Kutta methods with large regions of absolute stability , 2003 .

[24]  Kevin Burrage,et al.  A special family of Runge-Kutta methods for solving stiff differential equations , 1978 .

[25]  Zdzislaw Jackiewicz,et al.  Construction of high order diagonally implicit multistage integration methods for ordinary differential equations , 1998 .

[26]  Bruno Welfert,et al.  Two-Step Runge-Kutta: Theory and Practice , 2000 .

[27]  John C. Butcher,et al.  A Transformed implicit Runge-Kutta Method , 1979, JACM.

[28]  Z. Jackiewicz,et al.  Nordsieck representation of two-step Runge-Kutta methods for ordinary differential equations , 2005 .

[29]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[30]  John C. Butcher,et al.  Diagonally-implicit multi-stage integration methods , 1993 .

[31]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .