On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination.

A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70 degrees can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 A resolution.

[1]  Jorge Navaza,et al.  On the fast rotation function , 1987 .

[2]  G. Bricogne [23] Bayesian statistical viewpoint on structure determination: Basic concepts and examples. , 1997, Methods in enzymology.

[3]  Axel T. Brunger,et al.  Model bias in macromolecular crystal structures , 1992 .

[4]  Jan Pieter Abrahams,et al.  CRANK: new methods for automated macromolecular crystal structure solution. , 2004, Structure.

[5]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[6]  Robert Huber,et al.  Die automatisierte Faltmolekülmethode , 1965 .

[7]  R. Read Structure-factor probabilities for related structures , 1990 .

[8]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[9]  Hai-fu Fan,et al.  OASIS: a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data , 2000 .

[10]  Talapady N. Bhat,et al.  OMITMAP: An electron density map suitable for the examination of errors in a macromolecular model , 1984 .

[11]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[12]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[13]  A. Kramer,et al.  Evolutionary transition pathways for changing peptide ligand specificity and structure , 2000, The EMBO journal.

[14]  Talapady N. Bhat,et al.  Calculation of an OMIT map , 1988 .

[15]  P. A. Peterson,et al.  Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. , 1997, Science.

[16]  C. Giacovazzo,et al.  Advances in the free lunch method , 2007 .

[17]  I. Tanaka,et al.  Ammonia Channel Couples Glutaminase with Transamidase Reactions in GatCAB , 2006, Science.

[18]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[19]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[20]  M. Graille,et al.  Molecular basis for bacterial class I release factor methylation by PrmC. , 2005, Molecular cell.

[21]  K. Matuschewski,et al.  Structural basis for parasite-specific functions of the divergent profilin of Plasmodium falciparum. , 2008, Structure.

[22]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[23]  P. Main Phase determination using non‐crystallographic symmetry , 1967 .

[24]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[25]  Adam Godzik,et al.  Crystal structure of an alanine‐glyoxylate aminotransferase from Anabaena sp. at 1.70 Å resolution reveals a noncovalently linked PLP cofactor , 2005, Proteins.

[26]  G. Bricogne,et al.  Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .