Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM.

We discovered using SECM of the electro-reduction of CO2 on a Au substrate in CO2-saturated KHCO3 solutions that (i) formate comes solely from the direct reduction of bicarbonate; and (ii) CO forms only from CO2 reduction (under low pH conditions) and at higher applied potentials. The results point to the possibility of the selective reduction of CO2 to the formate product.

[1]  Aliaksandr S. Bandarenka,et al.  Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. , 2014, The Analyst.

[2]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[3]  T. Meyer,et al.  Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. , 2014, Journal of the American Chemical Society.

[4]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[5]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[6]  M. Koper,et al.  Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum. , 2013, Journal of the American Chemical Society.

[7]  John L DiMeglio,et al.  Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. , 2013, Journal of the American Chemical Society.

[8]  M. Koper,et al.  Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media , 2013, Journal of Solid State Electrochemistry.

[9]  Yeonji Oh,et al.  Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. , 2013, Chemical Society reviews.

[10]  Victor S Batista,et al.  Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111). , 2013, The journal of physical chemistry letters.

[11]  Eric D. Rus,et al.  An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts. , 2013, The Review of scientific instruments.

[12]  K. Shankar,et al.  Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. , 2012, Angewandte Chemie.

[13]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[14]  Richard G Compton,et al.  Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid. , 2012, Chemical communications.

[15]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[16]  Eric D. Rus,et al.  Mechanistic Studies of Formate Oxidation on Platinum in Alkaline Medium , 2012 .

[17]  Javier J. Concepcion,et al.  Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. , 2011, Chemical communications.

[18]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[19]  M. Koper,et al.  Electrochemical reduction of carbon dioxide on copper electrodes , 2017 .

[20]  P. Unwin,et al.  Scanning electrochemical microscopy (SECM) studies of catalytic EC' processes: theory and experiment for feedback, generation/collection and imaging measurements. , 2011, Physical chemistry chemical physics : PCCP.

[21]  R. Compton,et al.  Electrochemical CO2 sequestration in ionic liquids; a perspective , 2011 .

[22]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[23]  N. Sai,et al.  Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles. , 2010, The journal of physical chemistry. A.

[24]  Emily Barton Cole,et al.  Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. , 2010, Journal of the American Chemical Society.

[25]  Xile Hu,et al.  Carbon dioxide as the C1 source for direct C-H functionalization of aromatic heterocycles. , 2010, Organic letters.

[26]  Y. Hu Advances in CO2 conversion and utilization , 2010 .

[27]  Daniel L DuBois,et al.  Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. , 2009, Accounts of chemical research.

[28]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[29]  H. Abruña,et al.  Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study. , 2008, Physical chemistry chemical physics : PCCP.

[30]  M. Koper,et al.  Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution. , 2008, Physical chemistry chemical physics : PCCP.

[31]  S. Hoeppener,et al.  The electrooxidation of small organic molecules on platinum nanoparticles supported on gold: influence of platinum deposition procedure , 2008 .

[32]  A. Bard,et al.  Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. , 2008, Analytical chemistry.

[33]  Peng Sun,et al.  Scanning electrochemical microscopy in the 21st century. , 2007, Physical chemistry chemical physics : PCCP.

[34]  S. Jayaraman,et al.  A Multielectrode Electrochemical and Scanning Differential Electrochemical Mass Spectrometry Study of Methanol Oxidation on Electrodeposited PtxRuy , 2004 .

[35]  A. C. Hillier,et al.  Measuring Electrocatalytic Activity on a Local Scale with Scanning Differential Electrochemical Mass Spectrometry , 2003 .

[36]  Yu. V. Pleskov,et al.  Scanning Electrochemical Microscopy, Bard, A. J. and Mirkin, M. V., Eds., New York: Marcel Dekker, 2001 , 2002 .

[37]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[38]  Jiujun Zhang,et al.  Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring , 1996 .

[39]  J. Savéant,et al.  Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0) Porphyrins: Synergystic Effect of Weak Brönsted Acids , 1996 .

[40]  Ryoji Noyori,et al.  Homogeneous Hydrogenation of Carbon Dioxide , 1995 .

[41]  G. Nogami,et al.  Rotating Ring‐Disk Electrode Study on the Fixation Mechanism of Carbon Dioxide , 1995 .

[42]  Ichiro Yoshida,et al.  Electrocatalytic reduction of CO2 to methanol: Part 9: Mediation with metal porphyrins , 1988 .

[43]  M. Wrighton,et al.  Electrostatic binding of bicarbonate and formate in viologen-based redox polymers: importance in catalytic reduction of bicarbonate to formate , 1985 .

[44]  J. Augustynski,et al.  Electrochemical reduction of bicarbonate ions at a bright palladium cathode , 1985 .

[45]  Y. Hori,et al.  Electrolytic Reduction of Bicarbonate Ion at a Mercury Electrode , 1983 .

[46]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .