SERS Encoded Silver Pyramids for Attomolar Detection of Multiplexed Disease Biomarkers

Three disease biomarkers can simultaneously be detected at the attomolar level because of a novel surface-enhanced Raman scattering (SERS) encoded silver pyramid sensing system. This newly designed pyramidal sensor with well-controlled geometry exhibits highly sensitive, selective, and reproducible SERS signals, and holds promising potential for biodetection applications.

[1]  Koichi Abe,et al.  Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. , 2010, Biosensors & bioelectronics.

[2]  L. Liz‐Marzán,et al.  SERS-based diagnosis and biodetection. , 2010, Small.

[3]  G. Bazan,et al.  Antitags: Nanostructured Tools for Developing SERS‐Based ELISA Analogs , 2010, Advanced materials.

[4]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[5]  Ralph Weissleder,et al.  Cancer Cell Profiling by Barcoding Allows Multiplexed Protein Analysis in Fine-Needle Aspirates , 2014, Science Translational Medicine.

[6]  Y. Liu,et al.  Photoaffinity labeling of small-molecule-binding proteins by DNA-templated chemistry. , 2013, Angewandte Chemie.

[7]  Xiaobing Zhang,et al.  Molecular aptamers for drug delivery. , 2011, Trends in biotechnology.

[8]  Jiajing Zhou,et al.  SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. , 2014, Journal of the American Chemical Society.

[9]  Luis M Liz-Marzán,et al.  Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. , 2018, Nature materials.

[10]  Luis M. Liz-Marzán,et al.  Environmental applications of plasmon assisted Raman scattering , 2010 .

[11]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[12]  Xingyu Jiang,et al.  Nanomaterials for Ultrasensitive Protein Detection , 2013, Advanced materials.

[13]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[14]  Zhiyong Tang,et al.  Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. , 2011, Nature nanotechnology.

[15]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[16]  David J. Mooney,et al.  Label-free biomarker detection from whole blood , 2009, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[17]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[18]  Xiaohui Qiu,et al.  Superstructures and SERS properties of gold nanocrystals with different shapes. , 2011, Angewandte Chemie.

[19]  N. Wu,et al.  Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. , 2013, ACS nano.

[20]  Chad A. Mirkin,et al.  Drivers of biodiagnostic development , 2009, Nature.

[21]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[22]  Eugenia Kumacheva,et al.  Self-assembly of inorganic nanorods. , 2011, Chemical Society reviews.

[23]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[24]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[25]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[26]  Wei Li,et al.  Step-Growth Polymerization of Inorganic Nanoparticles , 2010, Science.

[27]  Zhong-Ze Gu,et al.  Multiplex label-free detection of biomolecules with an imprinted suspension array. , 2009, Angewandte Chemie.

[28]  Liguang Xu,et al.  Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. , 2012, Journal of the American Chemical Society.

[29]  R. Kennedy,et al.  Aptamers as ligands in affinity probe capillary electrophoresis. , 1998, Analytical chemistry.

[30]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[31]  Koon Gee Neoh,et al.  Affinity analysis of DNA aptamer-peptide interactions using gold nanoparticles. , 2012, Analytical biochemistry.

[32]  Xiliang Luo,et al.  Electrical biosensors and the label free detection of protein disease biomarkers. , 2013, Chemical Society reviews.

[33]  N. Kotov,et al.  Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. , 2013, Journal of the American Chemical Society.

[34]  Hongyu Chen,et al.  Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. , 2010, Journal of the American Chemical Society.

[35]  Liguang Xu,et al.  Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. , 2012, Journal of the American Chemical Society.

[36]  George C Schatz,et al.  Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced Raman scattering. , 2012, Nano letters.

[37]  Liguang Xu,et al.  Attomolar DNA detection with chiral nanorod assemblies , 2013, Nature Communications.

[38]  G. Bazan,et al.  Antitags: SERS‐Encoded Nanoparticle Assemblies that Enable Single‐Spot Multiplex Protein Detection , 2014, Advanced materials.

[39]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[40]  Bing Yan,et al.  SERS tags: novel optical nanoprobes for bioanalysis. , 2013, Chemical reviews.