Tuning field depth at high resolution by pupil engineering

We present a simple comprehensive treatment on the use of free-form optical elements, and of nonuniform optical windows, either for increasing focal depth [by regulating the width of the axial point spread function (PSF)] or for tuning the depth of field [by controlling the influence of focus error on the modulation transfer function (MTF)]. We employ the rising notation of pupil engineering, which incorporates techniques for controlling the spread of the axial PSF, as well as methods for governing the impact of focus errors on the MTF. Our discussion also includes the use of vortex lenses for designing nonconventional optical systems.

[1]  Lord Rayleigh On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[2]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[3]  H. H. Hopkins The frequency response of a defocused optical system , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  H. H. Hopkins The Aberration Permissible in Optical Systems , 1957 .

[5]  J. Dyson,et al.  Circular and spiral diffraction gratings , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  W. Welford Use of Annular Apertures to Increase Focal Depth , 1960 .

[7]  H. H. Hopkins The Application of Frequency Response Techniques in Optics , 1962 .

[8]  C. McCutchen Generalized Aperture and the Three-Dimensional Diffraction Image , 1964 .

[9]  W. Duane Montgomery,et al.  Self-Imaging Objects of Infinite Aperture* , 1967 .

[10]  A. W. Lohmann,et al.  Variable Fresnel Zone pattern. , 1967, Applied optics.

[11]  Henri H. Arsenault,et al.  An Axial Form of the Sampling Theorem and its Application to Optical Diffraction , 1967 .

[12]  A. Walther Radiometry and coherence , 1968 .

[13]  P. Stokseth Properties of a Defocused Optical System , 1969 .

[14]  B. Frieden The extrapolating pupil, image synthesis, and some thought applications. , 1970, Applied optics.

[15]  A. Lohmann A new class of varifocal lenses. , 1970, Applied optics.

[16]  M. Mino,et al.  Improvement in the OTF of a Defocused Optical System Through the Use of Shaded Apertures. , 1971, Applied optics.

[17]  G. Häusler,et al.  A method to increase the depth of focus by two step image processing , 1972 .

[18]  Olof Bryngdahl,et al.  Radial- and circular-fringe interferograms , 1973 .

[19]  A. Papoulis Ambiguity function in Fourier optics , 1974 .

[20]  R J Marks Ii,et al.  Ambiguity function display: an improved coherent processor. , 1977, Applied optics.

[21]  Joseph W. Goodman,et al.  Reconstructions of images of partially coherent objects from samples of mutual intensity , 1977 .

[22]  G. L. Rogers,et al.  The Interrelations between Moiré Patterns, Contour Fringes, Optical Surfaces and Their Sum and Difference Effects , 1977 .

[23]  J M Burch,et al.  Varifocal moiré zone plates for straightness measurement. , 1977, Applied optics.

[24]  A. Walther Propagation of the generalized radiance through lenses , 1978 .

[25]  Jean-Pierre Guigay The ambiguity function in diffraction and isoplanatic imaging by partially coherent beams , 1978 .

[26]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[27]  Imaging performance of annular apertures. 3:Apodization and modulation transfer functions. , 1979, Applied optics.

[28]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[29]  A. Lohmann,et al.  The wigner distribution function and its optical production , 1980 .

[30]  J. A. Blodgett,et al.  Wigner distribution and ambiguity function , 1980 .

[31]  William B. Wetherell,et al.  The Calculation of Image Quality , 1980 .

[32]  E. Wolf New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources , 1982 .

[33]  A. Lohmann,et al.  Wigner distribution function display of complex 1D signals , 1982 .

[34]  R J Pieper,et al.  Image processing for extended depth of field. , 1983, Applied optics.

[35]  A. W. Lohmann,et al.  Spatial Periodicities in Partially Coherent Fields , 1983 .

[36]  R. Bamler,et al.  The Wigner Distribution Function of Two-dimensional Signals Coherent-optical Generation and Display , 1983 .

[37]  J. Ojeda-Castañeda,et al.  Line-spread function relatively insensitive to defocus. , 1983, Optics letters.

[38]  J. Ojeda-Castañeda,et al.  Focus-error operator and related special functions , 1983 .

[39]  A. Lohmann,et al.  The ambiguity function as a polar display of the OTF , 1983 .

[40]  G Häusler,et al.  Simple focusing criterion. , 1984, Applied optics.

[41]  A. Lohmann,et al.  Symmetries and Periodicities of the Strehl Ratio , 1984 .

[42]  H O Bartelt,et al.  Misfocus tolerance seen by simple inspection of the ambiguity function. , 1984, Applied optics.

[43]  G Indebetouw,et al.  Imaging with Fresnel zone pupil masks: extended depth of field. , 1984, Applied optics.

[44]  B E Saleh,et al.  Generation of the Wigner distribution function of two-dimensional signals by a parallel optical processor. , 1984, Optics letters.

[45]  K. Brenner,et al.  Ambiguity Function and Wigner Distribution Function Applied to Partially Coherent Imagery , 1984 .

[46]  L'image tridimensionnelle du point en présence d'aberration sphérique primaire et de filtrage d'amplitude : unitaire ou modal , 1985 .

[47]  J Ojeda-Castañeda,et al.  Spatial filter for increasing the depth of focus. , 1985, Optics letters.

[48]  Chanin Varamit,et al.  Imaging properties of defocused partitioned pupils , 1985 .

[49]  Zoltan S. Hegedus,et al.  Annular pupil arrays. Application to confocal scanning , 1985 .

[50]  L. Hazra,et al.  Far-field diffraction properties of radial Walsh filters , 1986 .

[51]  J. Ojeda-Castañeda,et al.  Annular apodizers for low sensitivity to defocus and to spherical aberration. , 1986, Optics letters.

[52]  J. P. Mills,et al.  Effect of aberrations and apodization on the performance of coherent optical systems. II. Imaging , 1986 .

[53]  Objects that exhibit high focal depth. , 1986, Optics letters.

[54]  J. P. Mills,et al.  Effect of aberrations and apodization on the performance of coherent optical systems. I. The amplitude impulse response , 1986 .

[55]  J Ojeda-Castañeda,et al.  Bessel annular apodizers: imaging characteristics. , 1987, Applied optics.

[56]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[57]  Jorge Ojeda-Castaneda,et al.  Phase-space representation of the Strehl ratio: ambiguity function , 1987 .

[58]  M Motamedi,et al.  Optical/digital incoherent image processing for extended depth of field. , 1987, Applied optics.

[59]  A. Díaz,et al.  High focal depth by quasibifocus. , 1988, Applied optics.

[60]  A Pons,et al.  Apodization of annular apertures: Strehl ratio. , 1988, Applied optics.

[61]  Pedro Andrés,et al.  Strehl ratio with low sensitivity to spherical aberration , 1988 .

[62]  J Ojeda-Castañeda,et al.  Ambiguity function as a design tool for high focal depth. , 1988, Applied optics.

[63]  G Häusler,et al.  Acquisition of 3-D data by focus sensing. , 1988, Applied optics.

[64]  J Ojeda-Castañeda,et al.  Arbitrarily high focal depth with finite apertures. , 1988, Optics letters.

[65]  J Ojeda-Castaneda,et al.  High focal depth by apodization and digital restoration. , 1988, Applied optics.

[66]  Colin J. R. Sheppard,et al.  Axial behavior of pupil-plane filters , 1988 .

[67]  H. H. Hopkins,et al.  Influence of nonuniform amplitude on the optical transfer function. , 1989, Applied optics.

[68]  J Ojeda-Castaneda,et al.  Arbitrarily high focal depth with a quasioptimum real and positive transmittance apodizer. , 1989, Applied optics.

[69]  A W Lohmann,et al.  Scaling laws for lens systems. , 1989, Applied optics.

[70]  D. Allred,et al.  Effect of aberrations and apodization on the performance of coherent optical systems. 3: The near field. , 1989, Applied optics.

[71]  Zbigniew Jaroszewicz,et al.  The Light Sword Optical Element-a New Diffraction Structure with Extended Depth of Focus , 1990 .

[72]  M. Subbarao,et al.  Optical transfer function of a diffraction-limited system for polychromatic illumination. , 1990, Applied optics.

[73]  A A Friesem,et al.  Holographic axilens: high resolution and long focal depth. , 1991, Optics letters.

[74]  C. McCutchen Convolution relation within the three-dimensional diffraction image. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[75]  Adolf W. Lohmann Image formation of dilute arrays for optical information processing , 1991 .

[76]  G. Häusler,et al.  Three-dimensional sensing of rough surfaces by coherence radar. , 1992, Applied optics.

[77]  Edward H. Adelson,et al.  Single Lens Stereo with a Plenoptic Camera , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  M Martínez-Corral,et al.  Zero axial irradiance by annular screens with angular variation. , 1992, Applied optics.

[79]  M Sypek,et al.  Zone plates with black focal spots. , 1992, Applied optics.

[80]  Z. Jaroszewicz,et al.  Nonparaxial design of generalized axicons. , 1992, Applied optics.

[81]  J Sochacki,et al.  Phase retardation of the uniform-intensity axilens. , 1992, Optics letters.

[82]  J. Ojeda-Castañeda,et al.  Supergaussian beams of continuous order as GRIN modes , 1993 .

[83]  J. Ojeda-Castañeda,et al.  Off-axis focal shift for rotationally nonsymmetric screens. , 1993, Optics letters.

[84]  Guy Indebetouw,et al.  Optical Vortices and Their Propagation , 1993 .

[85]  J. Ojeda-Castañeda,et al.  Zone plates for zero axial irradiance. , 1993, Optics letters.

[86]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[87]  A. Lohmann,et al.  Axial irradiance shaping with binary polar curves , 1994 .

[88]  Joseph M. Geary,et al.  Image behavior of optic positioned inside the diffractive depth of focus , 1994 .

[89]  M Martínez-Corral,et al.  On-axis diffractional behavior of two-dimensional pupils. , 1994, Applied optics.

[90]  J. Ojeda-Castañeda,et al.  Plane-wave front: Novel representations , 1994 .

[91]  A Pons,et al.  Strehl ratio versus defocus for noncentrally obscured pupils. , 1994, Applied optics.

[92]  R. M. Gonzalez,et al.  Gradient-index axicon lenses: a quasi-geometrical study. , 1994, Applied optics.

[93]  Qian Gong,et al.  Aberration measurement using axial intensity , 1994 .

[94]  María J. Yzuel,et al.  Supergaussian rings: focusing properties , 1995 .

[95]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[96]  Sergio Granieri,et al.  Analysis of the Strehl ratio using the Wigner distribution function , 1995 .

[97]  A. Lohmann A fake zoom lens for fractional Fourier experiments , 1995 .

[98]  Spiral zone plates with arbitrary diameter of the dark spot in the centre of their focal point , 1995 .

[99]  Zone plates encoding limaçonal variations , 1995 .

[100]  C. J. R. Sheppard,et al.  Leaky annular pupils for improved axial imaging , 1995 .

[101]  L. Hazra,et al.  Kinoform lenses: Sweatt model and phase function , 1995 .

[102]  Pedro Andrés,et al.  Tunable axial superresolution by annular binary filters. Application to confocal microscopy , 1995 .

[103]  J van der Gracht,et al.  Broadband behavior of an optical-digital focus-invariant system. , 1996, Optics letters.

[104]  Colin J. R. Sheppard Synthesis of filters for specified axial properties , 1996 .

[105]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[106]  C. Parigger,et al.  Spherical aberration effects in lens-axicon doublets: theoretical study. , 1997, Applied optics.

[107]  E R Dowski,et al.  Realizations of focus invariance in optical-digital systems with wave-front coding. , 1997, Applied optics.

[108]  W. Cathey,et al.  Defocus transfer function for circularly symmetric pupils. , 1997, Applied optics.

[109]  L. R. Berriel-Valdos,et al.  Sampling expansions for three-dimensional light amplitude distribution in the vicinity of an axial image point , 1997 .

[110]  J Ojeda-Castañeda,et al.  Simultaneous Cartesian coordinate display of defocused optical transfer functions. , 1998, Optics letters.

[111]  Design of a phase-filtering mask and an aspherical lens for uniform irradiance and phase on target. , 1998, Applied optics.

[112]  Eero P. Simoncelli,et al.  Range estimation by optical differentiation. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[113]  E. E. Sicre,et al.  Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function. , 1998, Applied optics.

[114]  L. N. Hazra,et al.  Primary aberrations of a thin lens with different object and image space media , 1998 .

[115]  J Shamir,et al.  Pattern generation with an extended focal depth. , 1998, Applied optics.

[116]  H C Howland,et al.  Generation of third-order spherical and coma aberrations by use of radically symmetrical fourth-order lenses. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[117]  W T Cathey,et al.  Control of chromatic focal shift through wave-front coding. , 1998, Applied optics.

[118]  Francois Roddier,et al.  Adaptive Optics in Astronomy: Imaging through the atmosphere , 2004 .

[119]  Jose M Sasian,et al.  Lateral-shift variable aberration generators. , 1999 .

[120]  W T Cathey,et al.  Extended depth of field and aberration control for inexpensive digital microscope systems. , 1999, Optics express.

[121]  W. Plummer,et al.  Photographic optical systems with nonrotational aspheric surfaces. , 1999, Applied optics.

[122]  L. J. Summers,et al.  Diffractive Alvarez lens. , 2000, Optics letters.

[123]  Ajay Ghosh,et al.  High focal depth with a quasi-bifocus birefringent lens. , 2000, Applied optics.

[124]  M J Padgett,et al.  Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. , 2000, Optics letters.

[125]  Q. Cao,et al.  Axially symmetric on-axis flat-top beam. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[126]  S G Lipson,et al.  Superresolution in far-field imaging. , 2000, Optics letters.

[127]  Zalvidea,et al.  Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[128]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[129]  N George,et al.  Electronic imaging using a logarithmic asphere. , 2001, Optics letters.

[130]  G. Swartzlander,et al.  Peering into darkness with a vortex spatial filter. , 2001, Optics letters.

[131]  F. Gan,et al.  High focal depth with a pure-phase apodizer. , 2001, Applied optics.

[132]  Vassilios Sarafis,et al.  Two pinhole superresolution using spatial filters , 2001 .

[133]  Edward R. Dowski,et al.  Logarithmic phase filter to extend the depth of field of incoherent hybrid imaging systems , 2001, Optics + Photonics.

[134]  H Harashima,et al.  3-D computer graphics based on integral photography. , 2001, Optics express.

[135]  James G. Nagy,et al.  Iterative restoration of wavefront coded imagery for focus invariance , 2001 .

[136]  Edward R. Dowski,et al.  A New Paradigm for Imaging Systems , 2002, PICS.

[137]  Fuxi Gan,et al.  Phase-shifting apodizers for increasing focal depth. , 2002, Applied optics.

[138]  Ajay Ghosh,et al.  High tolerance to spherical aberrations and defects of focus with a birefringent lens. , 2002, Applied optics.

[139]  Gilbert Boyer,et al.  New class of axially apodizing filters for confocal scanning microscopy. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[140]  Amparo Pons,et al.  Axial apodization in 4Pi-confocal microscopy by annular binary filters. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[141]  Nicholas George,et al.  Extended depth of field using a logarithmic asphere , 2003 .

[142]  Sudhakar Prasad,et al.  Engineering the pupil phase to improve image quality , 2003, SPIE Defense + Commercial Sensing.

[143]  Shoude Chang,et al.  Optical system having a large focal depth for distant object tracking. , 2003, Optics express.

[144]  Andrew R. Harvey,et al.  Combined amplitude and phase filters for increased tolerance to spherical aberration , 2003 .

[145]  Andrew R Harvey,et al.  Phase pupil functions for reduction of defocus and spherical aberrations. , 2003, Optics letters.

[146]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[147]  S. Stallinga Light distribution close to focus in biaxially birefringent media. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[148]  Liren Liu,et al.  Transverse or axial superresolution with radial birefringent filter. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[149]  J. P. Woerdman,et al.  Production and characterization of spiral phase plates for optical wavelengths. , 2004, Applied optics.

[150]  Marc Levoy,et al.  Synthetic aperture confocal imaging , 2004, SIGGRAPH 2004.

[151]  B. Bouma,et al.  Generating an adjustable three-dimensional dark focus. , 2004, Optics letters.

[152]  Jorge Ojeda-Castañeda,et al.  High focal depth with fractional-power wave fronts. , 2004, Optics letters.

[153]  Shin‐Tson Wu,et al.  Tunable-focus flat liquid crystal spherical lens , 2004 .

[154]  Ty Martinez,et al.  Non-mechanical zoom system , 2004, SPIE Remote Sensing.

[155]  W. Cathey,et al.  Phase plate to extend the depth of field of incoherent hybrid imaging systems. , 2004, Applied optics.

[156]  B. Hendriks,et al.  Electrowetting-Based Variable-Focus Lens for Miniature Systems , 2005 .

[157]  Salvador Bará,et al.  Variable aberration generators using rotated Zernike plates. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[159]  J Ojeda-Castaneda,et al.  Annular phase-only mask for high focal depth. , 2005, Optics letters.

[160]  Yu-Hwa Lo,et al.  Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view , 2005 .

[161]  Wendong Xu,et al.  Tunable three-dimensional intensity distribution by a pure phase-shifting apodizer , 2005 .

[162]  Shoude Chang,et al.  Cemented doublet lens with an extended focal depth. , 2005, Optics express.

[163]  Gonzalo Muyo,et al.  Decomposition of the optical transfer function: wavefront coding imaging systems. , 2005, Optics letters.

[164]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[165]  Mats G. L. Gustafsson,et al.  A new approach to extended focus for high-speed high-resolution biological microscopy , 2006, SPIE BiOS.

[166]  Yoav Y Schechner,et al.  Depth from diffracted rotation. , 2006, Optics letters.

[167]  Zeev Zalevsky,et al.  Radial mask for imaging systems that exhibit high resolution and extended depths of field. , 2006, Applied optics.

[168]  M. Levoy,et al.  Light field microscopy , 2006, SIGGRAPH 2006.

[169]  Grover A Swartzlander,et al.  Achromatic optical vortex lens. , 2006, Optics letters.

[170]  Alexander Jesacher,et al.  Quantitative imaging of complex samples by spiral phase contrast microscopy. , 2006, Optics express.

[171]  Adolf W. Lohmann,et al.  Bow-tie effect: differential operator , 2006 .

[172]  Marc P Christensen,et al.  Enhancing form factor and light collection of multiplex imaging systems by using a cubic phase mask. , 2006, Applied optics.

[173]  Gonzalo Muyo,et al.  Circularly symmetric phase filters for control of primary third-order aberrations: coma and astigmatism. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[174]  Zeev Zalevsky,et al.  All-optical axial super resolving imaging using a low-frequency binary-phase mask. , 2006, Optics express.

[175]  D Shane Barwick Efficient metric for pupil-phase engineering. , 2007, Applied optics.

[176]  Toufic G. Jabbour,et al.  Axial field shaping under high-numerical-aperture focusing. , 2007, Optics letters.

[177]  B. Javidi,et al.  Integral imaging with large depth of field using an asymmetric phase mask. , 2007, Optics express.

[178]  E. E. García-Guerrero,et al.  Design and fabrication of random phase diffusers for extending the depth of focus. , 2006, Optics express.

[179]  Selective generation of high-order optical vortices from a single phase wedge. , 2007, Optics letters.

[181]  Claudio Iemmi,et al.  Tailoring the depth of focus for optical imaging systems using a Fourier transform approach. , 2007, Optics letters.

[182]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[183]  Marc P Christensen,et al.  Frequency analysis of the wavefront-coding odd-symmetric quadratic phase mask. , 2007, Applied optics.

[184]  M Sypek,et al.  Imaging with extended focal depth by means of lenses with radial and angular modulation. , 2007, Optics express.

[185]  Jianfeng Sun,et al.  Optimized phase pupil masks for extended depth of field , 2007 .

[186]  M. Cree,et al.  Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera , 2007 .

[187]  Rafael Piestun,et al.  High-efficiency rotating point spread functions. , 2008, Optics express.

[188]  Hui Zhao,et al.  Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system. , 2008, Optics letters.

[189]  Y. Lo,et al.  Miniaturized universal imaging device using fluidic lens. , 2008, Optics letters.

[190]  Shinichi Komatsu,et al.  Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging. , 2008, Optics letters.

[191]  Z Jaroszewicz,et al.  Imaging with extended focal depth by means of the refractive light sword optical element. , 2008, Optics express.

[192]  Yunlong Sheng,et al.  Polynomial phase masks for extending the depth of field of a microscope. , 2008, Applied optics.

[193]  Jorge Ojeda-Castañeda,et al.  Conjugate phase plate use in analysis of the frequency response of imaging systems designed for extended depth of field. , 2008, Applied optics.

[194]  A. Lohmann,et al.  Holography in phase space. , 2008, Applied optics.

[195]  Pantazis Mouroulis Depth of field extension with spherical optics. , 2008, Optics express.

[196]  Mikael Sjödahl,et al.  Improving the quality of phase maps in phase object digital holographic interferometry by finding the right reconstruction distance. , 2008, Applied optics.

[197]  Allen Y. Yi,et al.  Design and fabrication of a micro Alvarez lens array with a variable focal length , 2009 .

[198]  Dongsheng Wang,et al.  Optimized circularly symmetric phase mask to extend the depth of focus. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[199]  Sergio Barbero The Alvarez and Lohmann refractive lenses revisited. , 2009, Optics express.

[200]  J. Ojeda-Castañeda,et al.  Pseudo zone plate for extended focal depth , 2009, Optical Memory and Neural Networks.

[201]  Feng Yan,et al.  Optimization of an off-axis three-mirror anastigmatic system with wavefront coding technology based on MTF invariance. , 2009, Optics express.

[202]  A. Wood,et al.  Infrared imaging with a wavefront-coded singlet lens. , 2009, Optics express.

[203]  Michael J. Cree,et al.  Range imager performance comparison in homodyne and heterodyne operating modes , 2009, Electronic Imaging.

[204]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[205]  Andrew R Harvey,et al.  Image artifacts in hybrid imaging systems with a cubic phase mask. , 2010, Optics express.

[206]  Ramesh Raskar,et al.  Iterative aperture mask design in phase space using a rank constraint. , 2010, Optics express.

[207]  Mads Demenikov,et al.  Parametric blind-deconvolution algorithm to remove image artifacts in hybrid imaging systems. , 2010, Optics express.

[208]  Jorge Ojeda-Castaneda,et al.  Complex Amplitude Filters for Extended Depth of Field , 2010 .

[209]  Gonzalo Muyo,et al.  Experimental demonstration of continuously variable optical encoding in a hybrid imaging system. , 2010, Optics letters.

[210]  Hui Zhao,et al.  Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system. , 2010, Applied optics.

[211]  Antonin Miks,et al.  Analysis of two-element zoom systems based on variable power lenses. , 2010, Optics express.

[212]  Sean Quirin,et al.  Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions , 2011, Proceedings of the National Academy of Sciences.

[213]  Sean Quirin,et al.  Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging , 2011, Biomedical optics express.

[214]  Mads Demenikov Optimization of hybrid imaging systems based on maximization of kurtosis of the restored point spread function. , 2011, Optics letters.

[215]  Optical processor arrays for controlling focal length or for tuning the depth of field , 2011 .

[216]  Sourav Pal,et al.  Structural design of mechanically compensated zoom lenses by evolutionary programming , 2012 .

[217]  Sergio Ledesma,et al.  Tunable axial bursts using annularly distributed phase masks , 2012 .

[218]  Martí Duocastella,et al.  Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. , 2012, Journal of biomedical optics.

[219]  C. M. Gómez-Sarabia,et al.  Tunable Gaussian mask for extending the depth of field , 2012 .

[220]  Sean Quirin,et al.  Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE). , 2012, Optics express.

[221]  Jorge Ojeda-Castañeda,et al.  Hyper Gaussian windows with fractional wavefronts , 2013 .

[222]  Gordon Wetzstein,et al.  Compressive light field photography using overcomplete dictionaries and optimized projections , 2013, ACM Trans. Graph..

[223]  Jorge Ojeda-Castañeda,et al.  Tunable apodizers and tunable focalizers using helical pairs , 2013 .

[224]  Jorge Ojeda-Castañeda,et al.  Multiple-frame photography for extended depth of field. , 2013, Applied optics.

[225]  Aaron S. Andalman,et al.  Wave optics theory and 3-D deconvolution for the light field microscope. , 2013, Optics express.

[226]  L. Hazra,et al.  Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[227]  Carolina Rickenstorff-Parrao,et al.  Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. , 2013, Optics letters.

[228]  Craig B. Arnold,et al.  Enhanced depth of field laser processing using an ultra-high-speed axial scanner , 2013 .

[229]  Simon Thibault,et al.  Limits of imaging-system simplification using cubic mask wavefront coding. , 2013, Optics letters.

[230]  Jiří Novák,et al.  Three-component double conjugate zoom lens system from tunable focus lenses. , 2013, Applied optics.

[231]  Sharon V. King,et al.  Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering , 2014, Photonics West - Biomedical Optics.

[232]  C. M. Gómez-Sarabia,et al.  Novel free-form optical pairs for tunable focalizers , 2014 .

[233]  Jiří Novák,et al.  Paraxial imaging properties of double conjugate zoom lens system composed of three tunable-focus lenses , 2014 .

[234]  Zhigang Fan,et al.  Optimized asymmetrical tangent phase mask to obtain defocus invariant modulation transfer function in incoherent imaging systems. , 2014, Optics letters.

[235]  Hui Zhao,et al.  Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications , 2014 .

[236]  L R Berriel-Valdos,et al.  Phase mask coded with the superposition of four Zernike polynomials for extending the depth of field in an imaging system. , 2014, Applied optics.

[237]  Cristina M. Gómez-Sarabia,et al.  Aberration generators in tandem , 2015 .