A proximal point algorithm for DC fuctions on Hadamard manifolds

An extension of a proximal point algorithm for difference of two convex functions is presented in the context of Riemannian manifolds of nonposite sectional curvature. If the sequence generated by our algorithm is bounded it is proved that every cluster point is a critical point of the function (not necessarily convex) under consideration, even if minimizations are performed inexactly at each iteration. Application in maximization problems with constraints, within the framework of Hadamard manifolds is presented.

[1]  Robert J. Kauffman,et al.  Analyzing auction and bargaining mechanisms in e-procurement with supply quality risk , 2013, Oper. Res. Lett..

[2]  Orizon Pereira Ferreira,et al.  Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds , 2012, Journal of Optimization Theory and Applications.

[3]  Nan-Jing Huang,et al.  An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds , 2013, Oper. Res. Lett..

[4]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[5]  Moudafi,et al.  ON THE CONVERGENCE OF AN APPROXIMATE PROXIMAL METHOD FOR DC FUNCTIONS , 2006 .

[6]  J. Toland Duality in nonconvex optimization , 1978 .

[7]  Michael C. Ferris,et al.  Weak sharp minima and penalty functions in mathematical programming , 1988 .

[8]  Chong Li,et al.  Existence of solutions for variational inequalities on Riemannian manifolds , 2009 .

[9]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..

[10]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[11]  Pei Yean Lee Geometric optimization for computer vision , 2005 .

[12]  Chong Li,et al.  Mathematics 4-1-2009 Weak Sharp Minima on Riemannian Manifolds , 2014 .

[13]  I. Holopainen Riemannian Geometry , 1927, Nature.

[14]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[15]  Paulo Roberto Oliveira,et al.  Proximal point method for a special class of nonconvex functions on Hadamard manifolds , 2008, 0812.2201.

[16]  Chong Li,et al.  Variational Inequalities for Set-Valued Vector Fields on Riemannian Manifolds: Convexity of the Solution Set and the Proximal Point Algorithm , 2012, SIAM J. Control. Optim..

[17]  A. Elhilali Alaoui Caractérisation des fonctions D.C. , 1996 .

[18]  J. H. Wang,et al.  Monotone and Accretive Vector Fields on Riemannian Manifolds , 2010 .

[19]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[20]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[21]  R. Riddell,et al.  Minimax problems on Grassmann manifolds. Sums of eigenvalues , 1984 .

[22]  Alexandru Krist'aly Nash-type equilibria on Riemannian manifolds: a variational approach , 2016, 1602.04157.

[23]  Paulo Roberto Oliveira,et al.  Proximal point method for minimizing quasiconvex locally Lipschitz functions on Hadamard manifolds , 2012 .

[24]  Chong Li,et al.  Monotone vector fields and the proximal point algorithm on Hadamard manifolds , 2009 .

[25]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[26]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[27]  Chong Li,et al.  Convergence analysis of inexact proximal point algorithms on Hadamard manifolds , 2015, J. Glob. Optim..

[28]  Wen-yuSun,et al.  PROXIMAL POINT ALGORITHM FOR MINIMIZATION OF DC FUNCTION , 2003 .

[29]  G. C. Bento,et al.  Finite termination of the proximal point method for convex functions on Hadamard manifolds , 2012, 1205.4763.

[30]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds , 2008 .

[31]  S. Németh Variational inequalities on Hadamard manifolds , 2003 .

[32]  A. Zaslavski Proximal Point Algorithm , 2016 .

[33]  O. P. Ferreira,et al.  Subgradient Algorithm on Riemannian Manifolds , 1998 .

[34]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[35]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .