Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling

Sodium-ion batteries are emerging as a highly promising technology for large-scale energy storage applications. However, it remains a significant challenge to develop an anode with superior long-term cycling stability and high-rate capability. Here we demonstrate that the Na(+) intercalation pseudocapacitance in TiO2/graphene nanocomposites enables high-rate capability and long cycle life in a sodium-ion battery. This hybrid electrode exhibits a specific capacity of above 90 mA h g(-1) at 12,000 mA g(-1) (∼36 C). The capacity is highly reversible for more than 4,000 cycles, the longest demonstrated cyclability to date. First-principle calculations demonstrate that the intimate integration of graphene with TiO2 reduces the diffusion energy barrier, thus enhancing the Na(+) intercalation pseudocapacitive process. The Na-ion intercalation pseudocapacitance enabled by tailor-deigned nanostructures represents a promising strategy for developing electrode materials with high power density and long cycle life.

[1]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[2]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[3]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[4]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[5]  J. Greeley,et al.  Effect of Concentration on the Energetics and Dynamics of Li Ion Transport in Anatase and Amorphous TiO2 , 2011 .

[6]  Vinodkumar Etacheri,et al.  Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. , 2014, ACS nano.

[7]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[8]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[9]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[10]  Yunhui Huang,et al.  TiO2-B nanosheets/anatase nanocrystals co-anchored on nanoporous graphene: in situ reduction-hydrolysis synthesis and their superior rate performance as an anode material. , 2014, Chemistry.

[11]  P. Bruce,et al.  TiO2‐(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity , 2012 .

[12]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[13]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[14]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[15]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[16]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[17]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[18]  G. Stucky,et al.  Superior cathode of sodium-ion batteries: orthorhombic V₂O₅ nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. , 2014, Nano letters.

[19]  D. Wexler,et al.  Reversible sodium storage via conversion reaction of a MoS₂-C composite. , 2014, Chemical communications.

[20]  B. Bartlett,et al.  Lowering the Band Gap of Anatase-Structured TiO2 by Coalloying with Nb and N: Electronic Structure and Photocatalytic Degradation of Methylene Blue Dye , 2012 .

[21]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[22]  Y. Meng,et al.  First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential , 2007 .

[23]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[24]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[25]  Yan Yu,et al.  Single‐Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. , 2014 .

[26]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[27]  John B. Goodenough,et al.  Electrochemical energy storage in a sustainable modern society , 2014 .

[28]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[29]  Eric R. Waclawik,et al.  An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals. , 2009, Journal of the American Chemical Society.

[30]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[31]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[32]  Chilin Li,et al.  Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films , 2014 .

[33]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[34]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[35]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[36]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[37]  Hanxi Yang,et al.  Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries , 2013 .

[38]  M. P. Paranthaman,et al.  Mesoporous TiO2–B Microspheres with Superior Rate Performance for Lithium Ion Batteries , 2011, Advanced materials.

[39]  Jesse S. Ko,et al.  Lithium-ion storage properties of titanium oxide nanosheets , 2014 .

[40]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[41]  Yunhui Huang,et al.  Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries , 2014 .

[42]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[43]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[44]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[45]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[46]  Jia Ding,et al.  High-density sodium and lithium ion battery anodes from banana peels. , 2014, ACS nano.

[47]  Craig A. J. Fisher,et al.  Lithium and Sodium Battery Cathode Materials: Computational Insights into Voltage, Diffusion and Nanostructural Properties , 2014 .

[48]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[49]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[50]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[51]  Bruce Dunn,et al.  High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. , 2012, ACS nano.

[52]  G. F. Ortiz,et al.  Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium , 2014 .

[53]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[54]  Hyungyeon Cha,et al.  Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries , 2014 .

[55]  Jiulin Wang,et al.  Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries , 2012, Advanced materials.

[56]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .

[57]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[58]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[59]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[60]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.