The Oracle of DLphi

We present a novel technique based on deep learning and set theory which yields exceptional classification and prediction results. Having access to a sufficiently large amount of labelled training data, our methodology is capable of predicting the labels of the test data almost always even if the training data is entirely unrelated to the test data. In other words, we prove in a specific setting that as long as one has access to enough data points, the quality of the data is irrelevant.

[1]  Sebastian Bosse,et al.  A Haar wavelet-based perceptual similarity index for image quality assessment , 2016, Signal Process. Image Commun..

[2]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[3]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[4]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[5]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[6]  Christopher S. Hardin,et al.  A Peculiar Connection Between the Axiom of Choice and Predicting the Future , 2008, Am. Math. Mon..

[7]  Demis Hassabis,et al.  Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm , 2017, ArXiv.

[8]  Nicolas Usunier,et al.  Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks , 2016, ArXiv.

[9]  Marcel Nutz,et al.  Superreplication under Volatility Uncertainty for Measurable Claims , 2012, 1208.6486.

[10]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[11]  Mark J. F. Gales,et al.  Stimulated Deep Neural Network for Speech Recognition , 2016, INTERSPEECH.

[12]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[13]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Karsten Urban,et al.  Two Ways to Treat Time in Reduced Basis Methods , 2017 .

[15]  C. Micchelli,et al.  Approximation by superposition of sigmoidal and radial basis functions , 1992 .

[16]  R. Herzog,et al.  2. Improving Policies For Hamilton–Jacobi–Bellman Equations By Postprocessing , 2018, Hamilton-Jacobi-Bellman Equations.

[17]  Peter Hinz,et al.  A Framework for the Construction of Upper Bounds on the Number of Affine Linear Regions of ReLU Feed-Forward Neural Networks , 2019, IEEE Transactions on Information Theory.

[18]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[19]  Kenji Kawaguchi,et al.  Deep Learning without Poor Local Minima , 2016, NIPS.

[20]  Naoki Saito,et al.  Underwater object classification using scattering transform of sonar signals , 2017, Optical Engineering + Applications.

[21]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[22]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[23]  Joan Bruna,et al.  Mathematics of Deep Learning , 2017, ArXiv.

[24]  Dmitry Yarotsky,et al.  Error bounds for approximations with deep ReLU networks , 2016, Neural Networks.

[25]  Gitta Kutyniok,et al.  Parabolic Molecules , 2012, Found. Comput. Math..

[26]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[27]  Carola-Bibiane Schönlieb,et al.  Adversarial Regularizers in Inverse Problems , 2018, NeurIPS.

[28]  Martin Stoll,et al.  NFFT Meets Krylov Methods: Fast Matrix-Vector Products for the Graph Laplacian of Fully Connected Networks , 2018, Front. Appl. Math. Stat..

[29]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[30]  Shai Avidan,et al.  Semi-Global Matching: A Principled Derivation in Terms of Message Passing , 2014, GCPR.

[31]  A. Westermann „Das Kapital“, Kritik der politischen Ökonomie , .

[32]  Thomas Wiatowski,et al.  A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction , 2015, IEEE Transactions on Information Theory.

[33]  Emil Saucan,et al.  Coarse geometry of evolving networks , 2018, J. Complex Networks.

[34]  D. Kivaranovic,et al.  The burden of malignant melanoma--lessons to be learned from Austria. , 2016, European journal of cancer.

[35]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[36]  Molly E. Brown,et al.  Famine Early Warning Systems and Remote Sensing Data , 2008 .

[37]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[38]  Jan MacDonald,et al.  Improved Susceptibility Artifact Correction of Echo-Planar MRI using the Alternating Direction Method of Multipliers , 2018, Journal of Mathematical Imaging and Vision.

[39]  Julian Togelius,et al.  Artificial Intelligence and Games , 2018, Springer International Publishing.

[40]  Anders C. Hansen,et al.  On the stable sampling rate for binary measurements and wavelet reconstruction , 2019, Applied and Computational Harmonic Analysis.

[41]  Philipp Petersen,et al.  Optimal approximation of piecewise smooth functions using deep ReLU neural networks , 2017, Neural Networks.

[42]  Alexander Cloninger,et al.  Provable approximation properties for deep neural networks , 2015, ArXiv.

[43]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[44]  Ohad Shamir,et al.  Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks , 2016, ICML.

[45]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[46]  Helmut Bölcskei,et al.  The universal approximation power of finite-width deep ReLU networks , 2018, ArXiv.

[47]  R. J. LeVeque,et al.  Numerical Methods for Interface Coupling of Compressible and Almost Incompressible Media , 2016, SIAM J. Sci. Comput..

[48]  Matus Telgarsky,et al.  Benefits of Depth in Neural Networks , 2016, COLT.

[49]  Hrushikesh Narhar Mhaskar,et al.  Approximation properties of a multilayered feedforward artificial neural network , 1993, Adv. Comput. Math..