State Estimation Based on Self-Triggered Measurements

In this work, the problem of state estimation for nonlinear continuous-time systems from discrete data is tackled in a bounded error context. One assumes that all poorly-known system variables belong to a bounded set with known bounds. Then, a self-triggered algorithm is proposed to improve the performance of the classical set-membership state estimator based on the prediction-correction procedures. In order to cope with pessimism propagation linked to the bounding methods, this algorithm triggers the correction step whenever the size of a part of the estimated state enclosure becomes greater than a time-converging threshold a priori defined by the user. The effectiveness of the proposed self-triggered algorithm is illustrated through numerical simulations.

[1]  Jean-Luc Gouzé,et al.  Estimation of uncertain models of activated sludge processes with interval observers , 2001 .

[2]  Max b. Müller Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen , 1927 .

[3]  Y. Candau,et al.  Computing reachable sets for uncertain nonlinear monotone systems , 2010 .

[4]  A. Isidori Nonlinear Control Systems , 1985 .

[5]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[6]  Jean-Luc Gouzé,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007 .

[7]  David Angeli,et al.  Oscillations in I/O Monotone Systems Under Negative Feedback , 2007, IEEE Transactions on Automatic Control.

[8]  D. Luenberger An introduction to observers , 1971 .

[9]  J. Hedrick,et al.  Nonlinear Observers—A State-of-the-Art Survey , 1989 .

[10]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[11]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[12]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[13]  Nacim Meslem,et al.  Interval Observers for Uncertain Nonlinear Systems. Application to bioreactors. , 2008 .

[14]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[15]  Nacim Meslem,et al.  Guaranteed Parameter Set Estimation for Monotone Dynamical Systems Using Hybrid Automata , 2010, Reliab. Comput..

[16]  S. Drakunov Adaptive quasioptimal filter with discontinuous parameters , 1984 .

[17]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[18]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[19]  Nacim Meslem,et al.  Event-triggered algorithms for continuous-time systems based on reachability analysis , 2013, 52nd IEEE Conference on Decision and Control.

[20]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[21]  Paola Rubbioni,et al.  A new extension of classical Mu¨ller's theorem , 1997 .

[22]  Nacim Meslem,et al.  Using hybrid automata for set-membership state estimation with uncertain nonlinear continuous-time systems , 2010 .

[23]  A. Neumaier Interval methods for systems of equations , 1990 .

[24]  A. Vande Wouwer,et al.  Improving continuous–discrete interval observers with application to microalgae-based bioprocesses , 2009 .

[25]  D. E. Contois Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. , 1959, Journal of general microbiology.

[26]  Nacim Meslem,et al.  A Hybrid Bounding Method for Computing an Over-Approximation for the Reachable Set of Uncertain Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[27]  Eric Walter,et al.  GUARANTEED NONLINEAR STATE ESTIMATION FOR CONTINUOUS-TIME DYNAMICAL MODELS FROM DISCRETE-TIME MEASUREMENTS , 2006 .

[28]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[29]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[30]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[31]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[32]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .