On Algebraic Multilevel Preconditioners in Lattice Gauge Theory

Based on a Schur complement approach we develop a parallelizable multi-level preconditioning method for computing quark propagators in lattice gauge theory.

[1]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[2]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[5]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[6]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[7]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[8]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[9]  P. Forcrand Progress on lattice QCD algorithms , 1995, hep-lat/9509082.

[10]  Th. Lippert,et al.  A parallel SSOR preconditioner for lattice QCD , 1996, hep-lat/9608066.

[11]  A. Frommer Linear systems solvers — recent developments and implications for lattice computations , 1996, hep-lat/9608074.

[12]  Yvan Notay Optimal V-cycle Algebraic Multilevel Preconditioning , 1998 .

[13]  N. Eicker,et al.  Preconditioning of improved and “perfect” fermion actions , 1999 .

[14]  N. Eicker,et al.  A preconditioner for improved fermion actions , 1999 .

[15]  Y. Notay On Algebraic Multilevel Preconditioning , 2000 .

[16]  Arnold Reusken An Algebraic Multilevel Preconditioner for Symmetric Positive Definite and Indefinite Problems , 2000 .

[17]  A. Frommer,et al.  Numerical Challenges in Lattice Quantum Chromodynamics , 2000 .