Quantitative Phase Imaging: Principles and Applications

Quantitative phase imaging (QPI) is an emerging label-free imaging approach. QPI measures the optical phase delay associated with the object, and the resulting image provides an objective measure of morphology and dynamics, in the absence of contrast agents. As tremendous advances have been made in the past one–two decades, the QPI field continues expanding and gaining popularity. It has found applications in many different fields, especially in biomedicine. In this chapter, we provide a review of the principles associated with this exciting field, with discussion focused on optical physics, experimental principles, and applications.

[1]  Gabriel Popescu,et al.  Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy , 2016, Scientific Reports.

[2]  Gabriel Popescu,et al.  Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging , 2014, PloS one.

[3]  Dalip Singh Mehta,et al.  Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis , 2012 .

[4]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[5]  Bin Liu,et al.  Simultaneous dual-wavelength off-axis flipping digital holography. , 2017, Optics letters.

[6]  Kidong Park,et al.  Measurement of adherent cell mass and growth , 2010, Proceedings of the National Academy of Sciences.

[7]  YongKeun Park,et al.  Real-time quantitative phase imaging with a spatial phase-shifting algorithm. , 2011, Optics letters.

[8]  Joseph A. Izatt,et al.  Refractive index tomography with structured illumination , 2017, 1702.03595.

[9]  YongKeun Park,et al.  Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus , 2016, Scientific Reports.

[10]  C. Fang-Yen,et al.  Optical diffraction tomography for high resolution live cell imaging. , 2009, Optics express.

[11]  Pierre Marquet,et al.  Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders , 2014, Neurophotonics.

[12]  Moonseok Kim,et al.  Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. , 2012, Physical review letters.

[13]  M S Feld,et al.  Interferometric phase-dispersion microscopy. , 2000, Optics letters.

[14]  J. Mertz Introduction to Optical Microscopy , 2009 .

[15]  Natan T Shaked,et al.  Localized measurements of physical parameters within human sperm cells obtained with wide‐field interferometry , 2017, Journal of biophotonics.

[16]  G. Truskey,et al.  Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. , 2011, Journal of biomedical optics.

[17]  T. Valdez,et al.  Integration of diffraction phase microscopy and Raman imaging for label‐free morpho‐molecular assessment of live cells , 2018, Journal of biophotonics.

[18]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[19]  Gabriel Popescu,et al.  Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM) , 2018, Scientific Reports.

[20]  Gabriel Popescu,et al.  Measurement of multispectral scattering properties in mouse brain tissue. , 2017, Biomedical optics express.

[21]  YongKeun Park,et al.  Biomedical applications of holographic microspectroscopy [invited]. , 2014, Applied optics.

[22]  YongKeun Park,et al.  High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography , 2013, Journal of biomedical optics.

[23]  Zhuo Wang,et al.  Dispersion-relation phase spectroscopy of intracellular transport , 2011, Optics express.

[24]  Mingguang Shan,et al.  Optical excitation and detection of neuronal activity , 2017, bioRxiv.

[25]  Gabriel Popescu,et al.  Label-free tissue scanner for colorectal cancer screening , 2017, Journal of biomedical optics.

[26]  H. Greenspan,et al.  Quantitative phase microscopy spatial signatures of cancer cells , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[27]  Zhuo Wang,et al.  Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. , 2011, Optics letters.

[28]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[29]  Gabriel Popescu,et al.  Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. , 2004, Optics letters.

[30]  Gabriel Popescu,et al.  Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging , 2015, Scientific Reports.

[31]  Gabriel Popescu,et al.  Label-Free Characterization of Emerging Human Neuronal Networks , 2014, Scientific Reports.

[32]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[33]  D. Gabor A New Microscopic Principle , 1948, Nature.

[34]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[35]  Gabriel Popescu,et al.  Endoscopic diffraction phase microscopy. , 2018, Optics letters.

[36]  Amir Arbabi,et al.  Erratum: Optically monitoring and controlling nanoscale topography during semiconductor etching (Light: Science & Applications (2012) 1(e30) doi:10.1038/lsa.2012.30) , 2012 .

[37]  Mingguang Shan,et al.  White-light diffraction phase microscopy at doubled space-bandwidth product. , 2016, Optics express.

[38]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[39]  Mingguang Shan,et al.  Refractive index variance of cells and tissues measured by quantitative phase imaging. , 2017, Optics express.

[40]  Bahram Javidi,et al.  Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. , 2018, Optics express.

[41]  Gabriel Popescu,et al.  Cell density modulates intracellular mass transport in neural networks , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[42]  Gabriel Popescu,et al.  Optical properties of acute kidney injury measured by quantitative phase imaging. , 2018, Biomedical optics express.

[43]  Zhuo Wang,et al.  Optical measurement of cycle-dependent cell growth , 2011, Proceedings of the National Academy of Sciences.

[44]  Zhuo Wang,et al.  Scattering-phase theorem. , 2011, Optics letters.

[45]  Daniel Carl,et al.  Investigation of living pancreas tumor cells by digital holographic microscopy. , 2006, Journal of biomedical optics.

[46]  Gabriel Popescu,et al.  Active intracellular transport in metastatic cells studied by spatial light interference microscopy , 2015, Journal of biomedical optics.

[47]  Laura Waller,et al.  Standardizing the resolution claims for coherent microscopy , 2016, Nature Photonics.

[48]  Colin J R Sheppard,et al.  Resolution and super‐resolution , 2017, Microscopy research and technique.

[49]  B. Bhaduri,et al.  Epi-illumination diffraction phase microscopy with white light. , 2014, Optics letters.

[50]  Natan T Shaked,et al.  Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. , 2009, Optics express.

[51]  Gabriel Popescu,et al.  Breast cancer diagnosis using spatial light interference microscopy , 2015, Journal of biomedical optics.

[52]  Gabriel Popescu,et al.  Real-time halo correction in phase contrast imaging , 2017, bioRxiv.

[53]  Pasquale Memmolo,et al.  Tomographic flow cytometry by digital holography , 2016, Light: Science & Applications.

[54]  Seungwoo Shin,et al.  Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[55]  YoungJu Jo,et al.  Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications , 2013, Sensors.

[56]  Christian Depeursinge,et al.  Quantitative phase imaging in biomedicine , 2018, Nature Photonics.

[57]  Graham Dunn,et al.  An image processing system for cell behaviour studies in subconfluent cultures , 1995 .

[58]  M. Kirschner,et al.  Cell Growth and Size Homeostasis in Proliferating Animal Cells , 2009, Science.

[59]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[60]  G. Popescu Quantitative Phase Imaging of Cells and Tissues , 2011 .

[61]  E. Cuche,et al.  Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. , 2005, Optics express.

[62]  V. Micó,et al.  Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution , 2008 .

[63]  H. Pham,et al.  Spectroscopic diffraction phase microscopy. , 2012, Optics letters.

[64]  Pietro Ferraro,et al.  Label‐free quantification of the effects of lithium niobate polarization on cell adhesion via holographic microscopy , 2018, Journal of biophotonics.

[65]  G. Popescu,et al.  Inverse scattering solutions using low-coherence light. , 2014, Optics letters.

[66]  Yizheng Zhu,et al.  Quantitative phase spectroscopy , 2012, Biomedical optics express.

[67]  Pasquale Memmolo,et al.  Recent Advancements and Perspective About Digital Holography: A Super-Tool in Biomedical and Bioengineering Fields , 2018, Conference Proceedings of the Society for Experimental Mechanics Series.

[68]  Gabriel Popescu,et al.  Observation of dynamic subdomains in red blood cells. , 2006, Journal of biomedical optics.

[69]  Zeev Zalevsky,et al.  Coherent light microscopy : imaging and quantitative phase analysis , 2011 .

[70]  Di Jin,et al.  Tomographic phase microscopy: principles and applications in bioimaging [Invited]. , 2017, Journal of the Optical Society of America. B, Optical physics.

[71]  Gabriel Popescu,et al.  Derivative method for phase retrieval in off-axis quantitative phase imaging. , 2012, Optics letters.

[72]  P. Marquet,et al.  Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. , 2006, Optics express.

[73]  Tan H. Nguyen,et al.  Diffraction phase microscopy: principles and applications in materials and life sciences , 2014 .

[74]  T. Poon,et al.  Phase sensitivity of off-axis digital holography. , 2018, Optics letters.

[75]  P Memmolo,et al.  Phase contrast tomography at lab on chip scale by digital holography. , 2018, Methods.

[76]  Huafeng Ding,et al.  Off-axis quantitative phase imaging processing using CUDA: toward real-time applications , 2011, Biomedical optics express.

[77]  Zhuo Wang,et al.  Fourier transform light scattering of inhomogeneous and dynamic structures. , 2008, Physical review letters.

[78]  Adriaan van den Bos,et al.  Resolution: a survey , 1997 .

[79]  Yves Emery,et al.  Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy , 2017, Sensors.

[80]  Jong Chul Ye,et al.  Real-time Visualization of 3-d Dynamic Microscopic Objects Using Optical Diffraction Tomography References and Links , 2022 .

[81]  R. Barer Determination of Dry Mass, Thickness, Solid and Water Concentration in Living Cells , 1953, Nature.

[82]  G. B. David,et al.  The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. , 1969, Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik.

[83]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[84]  Minh N. Do,et al.  Halo-free Phase Contrast Microscopy , 2017, Scientific Reports.

[85]  Tan H. Nguyen,et al.  Quantitative phase imaging with partially coherent illumination. , 2014, Optics letters.

[86]  Amir Arbabi,et al.  Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy. , 2013, Nano letters.

[87]  Zhuo Wang,et al.  Tissue refractive index as marker of disease. , 2011, Journal of biomedical optics.

[88]  Eric Pop,et al.  Topography and refractometry of nanostructures using spatial light interference microscopy. , 2010, Optics letters.

[89]  Yi Wang,et al.  General spatial phase-shifting interferometry by optimizing the signal retrieving function. , 2017, Optics express.

[90]  J. Chi,et al.  Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells , 2016, PloS one.

[91]  YongKeun Park,et al.  Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[92]  G. Popescu,et al.  Correlation-induced spectral changes in tissues. , 2011, Optics letters.

[93]  Gabriel Popescu,et al.  Simultaneous cell traction and growth measurements using light. , 2019, Journal of biophotonics.

[94]  M. Hofmann,et al.  Depth-filtering in common-path digital holographic microscopy. , 2017, Optics express.

[95]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[96]  Gabriel Popescu,et al.  Effects of spatial coherence in diffraction phase microscopy. , 2014, Optics express.

[97]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[98]  Sujuan Huang,et al.  Phase distribution analysis of tissues based on the off-axis digital holographic hybrid reconstruction algorithm. , 2017, Biomedical optics express.

[99]  Gabriel Popescu,et al.  Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology , 2014, IEEE Photonics Journal.

[100]  YongKeun Park,et al.  Label-free optical quantification of structural alterations in Alzheimer’s disease , 2016, Scientific reports.

[101]  Gabriel Popescu,et al.  Quantitative phase imaging of weakly scattering objects using partially coherent illumination. , 2016, Optics express.

[102]  Adi Sheinfeld,et al.  Imaging deformation of adherent cells due to shear stress using quantitative phase imaging. , 2016, Optics letters.

[103]  Gabriel Popescu,et al.  Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population , 2016, Scientific Reports.

[104]  Halo suppression in full-field x-ray Zernike phase contrast microscopy. , 2014, Optics letters.

[105]  K. Dholakia,et al.  Exploiting multimode waveguides for pure fibre-based imaging , 2012, Nature Communications.

[106]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[107]  Gabriel Popescu,et al.  Quantitative Phase Imaging (QPI) in Neuroscience , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[108]  R M Levenson,et al.  Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment II , 2006, Histopathology.

[109]  Gabriel Popescu,et al.  Quantitative Phase Imaging , 2012 .

[110]  Gabriel Popescu,et al.  Quantitative phase imaging of live cells using fast Fourier phase microscopy. , 2007, Applied optics.

[111]  Young Jae Lee,et al.  Magnified Image Spatial Spectrum (MISS) microscopy for nanometer and millisecond scale label-free imaging. , 2018, Optics express.

[112]  K. Nugent,et al.  Quantitative optical phase microscopy. , 1998, Optics letters.

[113]  Gabriel Popescu,et al.  Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy. , 2017, ACS nano.

[114]  Zhuo Wang,et al.  Blood screening using diffraction phase cytometry. , 2010, Journal of biomedical optics.

[115]  Gabriel Popescu,et al.  Quantitative phase imaging for medical diagnosis , 2017, Journal of biophotonics.

[116]  Amir Arbabi,et al.  Optically monitoring and controlling nanoscale topography during semiconductor etching , 2012, Light: Science & Applications.

[117]  Gabriel Popescu,et al.  Physical significance of backscattering phase measurements. , 2017, Optics letters.

[118]  Ming-Chang Chen,et al.  Realization of Polarization Control in High-Order Harmonic Generation , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[119]  Gabriel Popescu,et al.  Disorder strength measured by quantitative phase imaging as intrinsic cancer marker in fixed tissue biopsies , 2018, PloS one.

[120]  D Zicha,et al.  Dynamics of fibroblast spreading. , 1995, Journal of cell science.

[121]  K. Nugent,et al.  Quantitative Phase Imaging Using Hard X Rays. , 1996, Physical review letters.

[122]  Simcha K. Mirsky,et al.  Stain‐free interferometric phase microscopy correlation with DNA fragmentation stain in human spermatozoa , 2018, Journal of biophotonics.

[123]  J. Chi,et al.  Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy , 2016, Scientific Reports.

[124]  Gabriel Popescu,et al.  Three‐dimensional intracellular transport in neuron bodies and neurites investigated by label‐free dispersion‐relation phase spectroscopy , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[125]  Gabriel Popescu,et al.  Quantitative assessment of neural outgrowth using spatial light interference microscopy , 2017, Journal of biomedical optics.

[126]  Minh N. Do,et al.  Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning , 2017, Journal of biomedical optics.

[127]  Gabriel Popescu,et al.  Highly Sensitive Quantitative Imaging for Monitoring Single Cancer Cell Growth Kinetics and Drug Response , 2014, PloS one.

[128]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[129]  Pasquale Memmolo,et al.  Holographic imaging of unlabelled sperm cells for semen analysis: a review , 2014, Journal of biophotonics.

[130]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[131]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.