Fibring Labelled Deduction Systems

We give a categorial characterization of how labelled deduction systems for logics with a propositional basis behave under unconstrained fibring and under fibring that is constrained by symbol sharing. At the semantic level, we introduce a general semantics for our systems and then give a categorial characterization of fibring of models. Based on this, we establish the conditions under which our systems are sound and complete with respect to the general semantics for the corresponding logics, and establish requirements on logics and systems so that completeness is preserved by both forms of fibring.

[1]  Claudia Faggian,et al.  Basic logic: reflection, symmetry, visibility , 2000, Journal of Symbolic Logic.

[2]  D. Gabbay Fibred Tableaux for Multi-Implication Logics , 1996 .

[3]  Luca Viganò,et al.  Natural Deduction for Non-Classical Logics , 1998, Stud Logica.

[4]  Dov M. Gabbay,et al.  Fibred modal tableaux , 2000 .

[5]  P. Blackburn Discipline as logic: treating labels as first class citizens , 2000 .

[6]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[7]  Cristina Sernadas,et al.  Categorial bring of logics with terms and binding operators , 2000 .

[8]  Dov M. Gabbay,et al.  Labelled deduction , 2000 .

[9]  Dov M. Gabbay,et al.  Fibred semantics and the weaving of logics. Part 1: Modal and intuitionistic logics , 1996, Journal of Symbolic Logic.

[10]  Krysia Broda,et al.  Tableau Methods for Substructural Logics , 1999 .

[11]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[12]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[13]  Dov M. Gabbay,et al.  Labelled Deductive Systems: Volume 1 , 1996 .

[14]  Dov M. Gabbay,et al.  An Overview of Fibred Semantics and the Combination of Logics , 1996, FroCoS.

[15]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[16]  Dov M. Gabbay,et al.  Fibring Semantic Tableaux , 1998, TABLEAUX.

[17]  Luca Viganò,et al.  Labelled non-classical logics , 2000 .

[18]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[19]  M. de Rijke,et al.  Why Combine Logics? , 1997, Stud Logica.

[20]  Dov M. Gabbay,et al.  A generalization of analytic deduction via labelled deductive systems. Part I: Basic substructural logics , 1994, Journal of Automated Reasoning.

[21]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[22]  Dov M. Gabbay,et al.  Fibred Tableaux for Multi-Implication Logic , 1996, TABLEAUX.

[23]  Nuel D. Belnap,et al.  Entailment : the logic of relevance and necessity , 1975 .

[24]  Cristina Sernadas,et al.  Fibring: completeness preservation , 2001, Journal of Symbolic Logic.

[25]  J. Dunn Partial-Gaggles Applied to Logics with Restricted Structural Rules , 1991 .

[26]  Dov M. Gabbay,et al.  Grafting Modalities onto Substructural Implication Systems , 1997, Stud Logica.

[27]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[28]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[29]  Cristina Sernadas,et al.  Fibring of Logics as a Categorial Construction , 1999, J. Log. Comput..

[30]  Luca Viganò,et al.  Labelled Propositional Modal Logics: Theory and Practice , 1997, J. Log. Comput..