Inexact Objective Function Evaluations in a Trust-Region Algorithm for PDE-Constrained Optimization under Uncertainty

This paper improves the trust-region algorithm with adaptive sparse grids introduced in [SIAM J. Sci. Comput., 35 (2013), pp. A1847--A1879] for the solution of optimization problems governed by partial differential equations (PDEs) with uncertain coefficients. The previous algorithm used adaptive sparse-grid discretizations to generate models that are applied in a trust-region framework to generate a trial step. The decision whether to accept this trial step as the new iterate, however, required relatively high-fidelity adaptive discretizations of the objective function. In this paper, we extend the algorithm and convergence theory to allow the use of low-fidelity adaptive sparse-grid models in objective function evaluations. This is accomplished by extending conditions on inexact function evaluations used in previous trust-region frameworks. Our algorithm adaptively builds two separate sparse grids: one to generate optimization models for the step computation and one to approximate the objective function...

[1]  Jorge J. Moré,et al.  Recent Developments in Algorithms and Software for Trust Region Methods , 1982, ISMP.

[2]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[3]  John L. Lumley,et al.  Derivation of the Stochastic Helmholtz Equation for Sound Propagation in a Turbulent Fluid , 1970 .

[4]  李幼升,et al.  Ph , 1989 .

[5]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[8]  Stefan Ulbrich,et al.  Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization , 2011, SIAM J. Optim..

[9]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[10]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[11]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[12]  Richard G. Carter,et al.  Numerical Experience with a Class of Algorithms for Nonlinear Optimization Using Inexact Function and Gradient Information , 1993, SIAM J. Sci. Comput..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[15]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[16]  Bart G. van Bloemen Waanders,et al.  A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty , 2012, SIAM J. Sci. Comput..

[17]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[18]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[19]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[20]  Michael A. Heroux,et al.  A new overview of the Trilinos project , 2012, Sci. Program..

[21]  Drew P. Kouri,et al.  An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients , 2012 .

[22]  Jerry Michael Harris The Influence of Random Media on the Propagation and Depolarization of Electromagnetic Waves , 1980 .

[23]  G. D. Manolis,et al.  A numerical comparative study of wave propagation in inhomogeneous and random media , 1992 .

[24]  Marco Fahl,et al.  Reduced Order Modelling Approaches to PDE-Constrained Optimization Based on Proper Orthogonal Decomposition , 2003 .

[25]  R. Carter On the global convergence of trust region algorithms using inexact gradient information , 1991 .

[26]  Philippe L. Toint,et al.  A retrospective trust-region method for unconstrained optimization , 2010, Math. Program..

[27]  Pavel B. Bochev,et al.  Solving PDEs with Intrepid , 2012, Sci. Program..

[28]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[29]  Richard G. Carter Numerical optimization in Hilbert space using inexact function and gradient evaluations , 1989 .

[30]  Luís N. Vicente,et al.  Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..