Direct minimization in mc scf theory. the quasi-newton method

Abstract The efficiency of the use of a diagonal approximation to the hessian matrix coupled with a quasi-Newton updating method in MC SCF calculations is examined. In general, satisfactory convergence is obtained provided the CI expansion corresponds to a full valence shell CI.

[1]  Michael A. Robb,et al.  Application of unitary group methods to configuration interaction calculations , 1979 .

[2]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[3]  D. G. Hopper,et al.  Theoretical studies of the ozone molecule. I. Ab initio MCSCF/CI potential energy surfaces for the X 1A1 and a 2B2 states , 1981 .

[4]  Danny L. Yeager,et al.  Convergency studies of second and approximate second order multiconfigurational Hartree−Fock procedures , 1979 .

[5]  B. Lévy,et al.  Exponential transformation of molecular orbitals: A quadratically convergent SCF procedure. I. General formulation and application to closed-shell ground states , 1980 .

[6]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[7]  Hans-Joachim Werner,et al.  A quadratically convergent multiconfiguration–self‐consistent field method with simultaneous optimization of orbitals and CI coefficients , 1980 .

[8]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[9]  C. A. Ward The rate of gas absorption at a liquid interface , 1977 .

[10]  Bruce A. Murtagh,et al.  Computational Experience with Quadratically Convergent Minimisation Methods , 1970, Comput. J..

[11]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .