Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces

[1]  H. Yin,et al.  Increasing the order of convergence for iterative methods to solve nonlinear systems , 2016 .

[2]  I. Argyros,et al.  Local convergence of deformed Halley method in Banach space under Holder continuity conditions , 2016 .

[3]  Sukhjit Singh Dhaliwal,et al.  Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces , 2016, Appl. Math. Comput..

[4]  Sukhjit Singh Dhaliwal,et al.  Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition , 2016, Appl. Math. Comput..

[5]  Ioannis K. Argyros,et al.  Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative , 2015, Algorithms.

[6]  Ioannis K. Argyros,et al.  Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order , 2015, J. Comput. Appl. Math..

[7]  Alicia Cordero,et al.  On the local convergence of a fifth-order iterative method in Banach spaces , 2015, Appl. Math. Comput..

[8]  Ping Liu,et al.  An improvement of Chebyshev-Halley methods free from second derivative , 2014, Appl. Math. Comput..

[9]  Ioannis K. Argyros,et al.  On the local convergence of fast two-step Newton-like methods for solving nonlinear equations , 2013, J. Comput. Appl. Math..

[10]  L. B. Rall,et al.  Computational Solution of Nonlinear Operator Equations , 1969 .

[11]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[12]  I. Argyros,et al.  A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative , 2015, Numerical Algorithms.

[13]  I. Argyros,et al.  47-58 LOCAL CONVERGENCE OF MODIFIED HALLEY-LIKE METHODS WITH LESS COMPUTATION OF INVERSION , 2015 .

[14]  I. Argyros Local convergence for a family of third order methods in Banach spaces , 2014 .

[15]  J. Traub Iterative Methods for the Solution of Equations , 1982 .