Constrained optimization with stochastic feasibility regions applied to vehicle path planning

In real-time trajectory planning for unmanned vehicles, on-board sensors, radars and other instruments are used to collect information on possible obstacles to be avoided and pathways to be followed. Since, in practice, observations of the sensors have measurement errors, the stochasticity of the data has to be incorporated into the models. In this paper, we consider using a genetic algorithm for the constrained optimization problem of finding the trajectory with minimum length between two locations, avoiding the obstacles on the way. To incorporate the variability of the sensor readings, we propose a modified genetic algorithm, addressing the stochasticity of the feasible regions. In this way, the probability that a possible solution in the search space, say x, is feasible can be derived from the random observations of obstacles and pathways, creating a real-time data learning algorithm. By building a confidence region from the observed data such that its border intersects with the solution point x, the level of the confidence region defines the probability that x is feasible. We propose using a smooth penalty function based on the Gaussian distribution, facilitating the borders of the feasible regions to be reached by the algorithm.

[1]  Svetlozar T. Rachev,et al.  Quantitative Stability in Stochastic Programming: The Method of Probability Metrics , 2002, Math. Oper. Res..

[2]  C.-Y. Lin,et al.  Self-organizing adaptive penalty strategy in constrained genetic search , 2004 .

[3]  Ioannis K. Nikolos,et al.  UAV Path Planning Using Evolutionary Algorithms , 2007, Innovations in Intelligent Machines.

[4]  Juris Vagners,et al.  PARALLEL EVOLUTIONARY ALGORITHMS FOR UAV PATH PLANNING , 2004 .

[5]  Vincent Roberge,et al.  Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning , 2013, IEEE Transactions on Industrial Informatics.

[6]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[7]  Ioannis K. Nikolos,et al.  Coordinated UAV Path Planning Using Differential Evolution , 2005 .

[8]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  N. Hansen,et al.  Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem , 2015, Evolutionary Computation.

[11]  Changwen Zheng,et al.  Coevolving and cooperating path planner for multiple unmanned air vehicles , 2004, Eng. Appl. Artif. Intell..

[12]  Hoi-Shan Lin,et al.  Evolutionary algorithm for path planning in mobile robot environment , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[13]  Simon X. Yang,et al.  Genetic algorithm based path planning for a mobile robot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Heng-Ming Tai,et al.  Autonomous local path planning for a mobile robot using a genetic algorithm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Simge Küçükyavuz,et al.  On mixing sets arising in chance-constrained programming , 2012, Math. Program..

[16]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[17]  Xian Liu On Compact Formulation of Constraints Induced by Disjoint Prohibited-Zones , 2010, IEEE Transactions on Power Systems.

[18]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[19]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[20]  Fuchun Sun,et al.  Evolutionary route planner for unmanned air vehicles , 2005, IEEE Transactions on Robotics.

[21]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[22]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[23]  Eric Feron,et al.  Decentralized Cooperative Trajectory Planning of Multiple Aircraft with Hard Safety Guarantees , 2004 .

[24]  Kimon P. Valavanis,et al.  Evolutionary algorithm based offline/online path planner for UAV navigation , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[25]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[26]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .

[27]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[28]  B. L. Miller,et al.  Chance Constrained Programming with Joint Constraints , 1965 .

[29]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[30]  Tal Shima,et al.  Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms , 2011, Comput. Oper. Res..

[31]  Tamás Szántai,et al.  Stochastic programming in water management: A case study and a comparison of solution techniques , 1991 .

[32]  W. Cooper,et al.  Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA , 1998 .

[33]  Alice E. Smith,et al.  Genetic Optimization Using A Penalty Function , 1993, ICGA.

[34]  Pu Li,et al.  Stochastic Optimization for Operating Chemical Processes under Uncertainty , 2001 .

[35]  J. Jeevamalar Autonomous Robot Path Planning Using a Genetic Algorithm , 2011 .

[36]  Simon X. Yang,et al.  A knowledge based genetic algorithm for path planning of a mobile robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[37]  Mingyue Ding,et al.  Phase Angle-Encoded and Quantum-Behaved Particle Swarm Optimization Applied to Three-Dimensional Route Planning for UAV , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[38]  Andreas C. Nearchou,et al.  Adaptive navigation of autonomous vehicles using evolutionary algorithms , 1999, Artif. Intell. Eng..

[39]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[40]  Gang Lei,et al.  Hurry Path Planning Based on Adaptive Genetic Algorithm , 2013 .

[41]  Oscar Castillo,et al.  Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots , 2006, Soft Comput..

[42]  Nancy L. Garcia,et al.  A penalized nonparametric method for nonlinear constrained optimization based on noisy data , 2010, Comput. Optim. Appl..

[43]  Zhong-Ren Peng,et al.  Multi-objective evolutionary approach for UAV cruise route planning to collect traffic information , 2012, Journal of Central South University.

[44]  Y. Volkan Pehlivanoglu,et al.  A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV , 2012 .

[45]  Luis Felipe Gonzalez,et al.  FPGA Implementation of an Evolutionary Algorithm for Autonomous Unmanned Aerial Vehicle On-Board Path Planning , 2013, IEEE Transactions on Evolutionary Computation.

[46]  Lei Yu,et al.  Approaches on the Calibration of Laser Diode (LD) Tester , 2014 .

[47]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[48]  Marco Montemurro,et al.  The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms , 2013 .

[49]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[50]  R. A. Jabr,et al.  Solution to Economic Dispatching With Disjoint Feasible Regions Via Semidefinite Programming , 2012, IEEE Transactions on Power Systems.

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  A.E.F. Ryerson,et al.  Vehicle Path Planning for Complete Field Coverage Using Genetic Algorithms , 2007 .

[53]  Roman Smierzchalski Evolutionary trajectory planning of ships in navigation traffic areas , 1999 .

[54]  Mario Fernando Montenegro Campos,et al.  Feasible UAV Path Planning Using Genetic Algorithms and Bézier Curves , 2010, SBIA.

[55]  Mingyue Ding,et al.  Real-Time Route Planning for Unmanned Air Vehicle with an Evolutionary Algorithm , 2003, Int. J. Pattern Recognit. Artif. Intell..

[56]  Tal Shima,et al.  Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms , 2006, Comput. Oper. Res..

[57]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[58]  R. Henrion,et al.  Optimization of a continuous distillation process under random inflow rate , 2003 .