Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview

There is growing interest in the metabolic interplay between the gut microbiome and host metabolism. Taxonomic and functional profiling of the gut microbiome by next-generation sequencing (NGS) has unveiled substantial richness and diversity. However, the mechanisms underlying interactions between diet, gut microbiome and host metabolism are still poorly understood. Genome-scale metabolic modeling (GSMM) is an emerging approach that has been increasingly applied to infer diet–microbiome, microbe–microbe and host–microbe interactions under physiological conditions. GSMM can, for example, be applied to estimate the metabolic capabilities of microbes in the gut. Here, we discuss how meta-omics datasets such as shotgun metagenomics, can be processed and integrated to develop large-scale, condition-specific, personalized microbiota models in healthy and disease states. Furthermore, we summarize various tools and resources available for metagenomic data processing and GSMM, highlighting the experimental approaches needed to validate the model predictions.

[1]  Wei Jia,et al.  Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics , 2016, International journal of molecular sciences.

[2]  Tulika Prakash,et al.  Functional assignment of metagenomic data: challenges and applications , 2012, Briefings Bioinform..

[3]  Luis Pedro Coelho,et al.  Subspecies in the global human gut microbiome , 2017, Molecular systems biology.

[4]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[5]  A. Fodor,et al.  Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. , 2011, Gastroenterology.

[6]  Fangfang Xia,et al.  The DOE Systems Biology Knowledgebase (KBase) , 2016, bioRxiv.

[7]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[8]  Peer Bork,et al.  MOCAT2: a metagenomic assembly, annotation and profiling framework , 2016, Bioinform..

[9]  G. Migliara,et al.  Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells , 2014, Journal of immunology research.

[10]  A. Kostic,et al.  An integrative view of microbiome-host interactions in inflammatory bowel diseases. , 2015, Cell host & microbe.

[11]  Intawat Nookaew,et al.  Understanding the interactions between bacteria in the human gut through metabolic modeling , 2013, Scientific Reports.

[12]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[13]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[14]  Y. Belkaid,et al.  Intestinal microbiota: shaping local and systemic immune responses. , 2012, Seminars in immunology.

[15]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[16]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[17]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[18]  Cynthia L Sears,et al.  Microbes, microbiota, and colon cancer. , 2014, Cell host & microbe.

[19]  Federico Baldini,et al.  The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities , 2018, bioRxiv.

[20]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases , 2015, Nucleic Acids Res..

[21]  M. Orešič,et al.  Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. , 2018, Methods.

[22]  A. Duffy,et al.  Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. , 2017, The Journal of nutrition.

[23]  Ronan M. T. Fleming,et al.  Quantitative systems pharmacology and the personalized drug–microbiota–diet axis , 2017, Current opinion in systems biology.

[24]  Francisco J. Planes,et al.  Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. , 2017, 1710.04038.

[25]  Z. Ma,et al.  Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota , 2013, The ISME Journal.

[26]  R. Knight,et al.  Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. , 2009, Genome research.

[27]  Alex H. Lang,et al.  Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. , 2014, Cell reports.

[28]  Partho Sen,et al.  Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. , 2015, Cell metabolism.

[29]  P. Bork,et al.  Human gut microbes impact host serum metabolome and insulin sensitivity , 2016, Nature.

[30]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[31]  Naveen Kumar,et al.  MetaBioME: a database to explore commercially useful enzymes in metagenomic datasets , 2009, Nucleic Acids Res..

[32]  R. Ley,et al.  Innate immunity and intestinal microbiota in the development of Type 1 diabetes , 2008, Nature.

[33]  R. Fleming,et al.  The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease , 2018, bioRxiv.

[34]  Lawrence A David,et al.  Toward Personalized Control of Human Gut Bacterial Communities , 2018, mSystems.

[35]  B. Palsson,et al.  Supplement to: Formulating multi-cellular models of metabolism in tissues: application to energy metabolism in the human brain , 2010 .

[36]  Sophie J. Weiss,et al.  Correlation detection strategies in microbial data sets vary widely in sensitivity and precision , 2016, The ISME Journal.

[37]  Avlant Nilsson,et al.  Recon3D: A Resource Enabling A Three-Dimensional View of Gene Variation in Human Metabolism , 2018, Nature Biotechnology.

[38]  Jason A. Papin,et al.  Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation , 2013, PloS one.

[39]  Neil Swainston,et al.  Recon 2.2: from reconstruction to model of human metabolism , 2016, Metabolomics.

[40]  Ernesto S. Nakayasu,et al.  Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation , 2012, Molecular systems biology.

[41]  Susan M. Huse,et al.  Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle , 2016, Microbiome.

[42]  Tommi Vatanen,et al.  The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. , 2015, Cell host & microbe.

[43]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[44]  K. Kuriki,et al.  Inter- and intra-individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese , 2015, Archives of Microbiology.

[45]  C. Hess,et al.  T‐cell metabolism governing activation, proliferation and differentiation; a modular view , 2017, Immunology.

[46]  Jens Nielsen,et al.  The gut microbiota modulates host amino acid and glutathione metabolism in mice , 2015 .

[47]  D. Raoult,et al.  A comprehensive repertoire of prokaryotic species identified in human beings. , 2015, The Lancet. Infectious diseases.

[48]  Jens Nielsen,et al.  Elucidating the interactions between the human gut microbiota and its host through metabolic modeling , 2014, Front. Genet..

[49]  Bernard Henrissat,et al.  Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome , 2012, PLoS Comput. Biol..

[50]  Ines Thiele,et al.  Computationally efficient flux variability analysis , 2010, BMC Bioinformatics.

[51]  F. Bäckhed,et al.  In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis , 2018, PloS one.

[52]  Michael P. Barrett,et al.  MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks , 2010, Nucleic Acids Res..

[53]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[54]  S. Abramson,et al.  The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions , 2016, Nature Reviews Rheumatology.

[55]  Ronan M. T. Fleming,et al.  Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut , 2013, Gut microbes.

[56]  Timothy L. Tickle,et al.  Computational meta'omics for microbial community studies , 2013, Molecular systems biology.

[57]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[58]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[59]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[60]  Adam P. Arkin,et al.  The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism , 2017, BMC Bioinformatics.

[61]  Intawat Nookaew,et al.  Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes. , 2016, Cell reports.

[62]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[63]  Johannes Zimmermann,et al.  BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities , 2017, PLoS Comput. Biol..

[64]  The Uniprot Consortium UniProt: the universal protein knowledgebase , 2018, Nucleic acids research.

[65]  Radhakrishnan Mahadevan,et al.  Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments , 2011, The ISME Journal.

[66]  Ronan M. T. Fleming,et al.  Personalized modeling of the human gut microbiome reveals distinct bile acid deconjugation and biotransformation potential in healthy and IBD individuals , 2017, bioRxiv.

[67]  J. Nielsen,et al.  Selection of complementary foods based on optimal nutritional values , 2017, Scientific Reports.

[68]  Zachary A. King,et al.  Constraint-based models predict metabolic and associated cellular functions , 2014, Nature Reviews Genetics.

[69]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[70]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[71]  I-Min A. Chen,et al.  IMG/M: integrated genome and metagenome comparative data analysis system , 2016, Nucleic Acids Res..

[72]  H. Harmsen,et al.  Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? , 2006, Diabetologia.

[73]  W. D. de Vos,et al.  The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota , 2017, Microbiology and Molecular Biology Reviews.

[74]  V. Tremaroli,et al.  Resource Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life Graphical Abstract Highlights , 2022 .

[75]  Christian L. Müller,et al.  Sparse and Compositionally Robust Inference of Microbial Ecological Networks , 2014, PLoS Comput. Biol..

[76]  Zhiheng Pei,et al.  Pearls and pitfalls of genomics-based microbiome analysis , 2012, Emerging Microbes & Infections.

[77]  C. Robert,et al.  Culture of previously uncultured members of the human gut microbiota by culturomics , 2016, Nature Microbiology.

[78]  I. Thiele,et al.  Gut microbiota functions: metabolism of nutrients and other food components , 2017, European Journal of Nutrition.

[79]  Jens Nielsen,et al.  New insight into the gut microbiome through metagenomics , 2015 .

[80]  Nicholas Chia,et al.  MMinte: an application for predicting metabolic interactions among the microbial species in a community , 2016, BMC Bioinformatics.

[81]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[82]  M. Orešič,et al.  Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells , 2018, Front. Mol. Biosci..

[83]  P. Bork,et al.  The Human Gut Microbiome: From Association to Modulation , 2018, Cell.

[84]  N. Sarvetnick,et al.  Type 1 diabetes: role of intestinal microbiome in humans and mice , 2011, Annals of the New York Academy of Sciences.

[85]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[86]  M. Uhlén,et al.  Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease , 2014, Nature Communications.

[87]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[88]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[89]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[90]  Ali R. Zomorrodi,et al.  d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. , 2014, ACS synthetic biology.

[91]  R. Daniel,et al.  Metagenomic Analyses: Past and Future Trends , 2010, Applied and Environmental Microbiology.

[92]  Costas D. Maranas,et al.  SteadyCom: Predicting microbial abundances while ensuring community stability , 2017, PLoS Comput. Biol..

[93]  A. Butte,et al.  The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease , 2014, Cell host & microbe.

[94]  S. Placzek,et al.  The BRENDA enzyme information system-From a database to an expert system. , 2017, Journal of biotechnology.

[95]  H. Vial,et al.  Mathematical Modeling and Omic Data Integration to Understand Dynamic Adaptation of Apicomplexan Parasites and Identify Pharmaceutical Targets , 2016 .

[96]  Natapol Pornputtapong,et al.  Human metabolic atlas: an online resource for human metabolism , 2015, Database J. Biol. Databases Curation.

[97]  N. Juge,et al.  Introduction to the human gut microbiota , 2017, The Biochemical journal.

[98]  I. Thiele,et al.  From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota , 2018, mSystems.

[99]  Rob Knight,et al.  American Gut: an Open Platform for Citizen Science Microbiome Research , 2018, mSystems.

[100]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[101]  Katherine H. Huang,et al.  The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome , 2012, PLoS biology.

[102]  D. Antonopoulos,et al.  Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. , 2010, Cold Spring Harbor protocols.

[103]  G. Casella,et al.  Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model , 2009, The ISME Journal.

[104]  Ronan M. T. Fleming,et al.  When metabolism meets physiology: Harvey and Harvetta , 2018, bioRxiv.

[105]  Knut Rudi,et al.  The composition of the gut microbiota throughout life, with an emphasis on early life , 2015, Microbial ecology in health and disease.

[106]  I. Nookaew,et al.  Integration of clinical data with a genome-scale metabolic model of the human adipocyte , 2013, Molecular systems biology.

[107]  Susan M. Huse,et al.  The Taxonomic and Functional Diversity of Microbes at a Temperate Coastal Site: A ‘Multi-Omic’ Study of Seasonal and Diel Temporal Variation , 2010, PloS one.

[108]  Ines Thiele,et al.  Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells , 2013, Human molecular genetics.

[109]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[110]  Partho Sen,et al.  Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways , 2013, BMC Systems Biology.

[111]  F. Bäckhed,et al.  Role of gut microbiota in atherosclerosis , 2017, Nature Reviews Cardiology.

[112]  Peter D'Eustachio,et al.  Reactome knowledgebase of human biological pathways and processes. , 2011, Methods in molecular biology.

[113]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[114]  Jens Nielsen,et al.  Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. , 2018, Metabolic engineering.

[115]  M. Doebeli,et al.  Calibration and analysis of genome-based models for microbial ecology , 2015, eLife.

[116]  Didier Raoult,et al.  The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota , 2015, Clinical Microbiology Reviews.