Modified Natural Excitation Technique for Stochastic Modal Identification

AbstractThis paper presents an improvement to the eigensystem realization algorithm (ERA) with natural excitation technique (NExT), which is called the ERA-NExT-AVG method. The method uses a coded average of row vectors in each Markov parameter for evaluating modal properties of a structure. The modification is important because, for the existing stochastic system identification methods, the state-space model, obtained from output sensor data, is usually overparameterized resulting in large systems. Solving such a problem can be computationally very intensive especially in the applications when using the computational capabilities of embedded sensor networks. As a way to improve the efficiency of the ERA-NExT method, the proposed method focuses on the number of components in a single Markov parameter, which can theoretically be minimized down to the number of structural modes. Applying the coded average column vectors as Markov parameters to the ERA, the computational cost of the algorithm is significantl...

[1]  M. Phan,et al.  Integrated system identification and state estimation for control offlexible space structures , 1992 .

[2]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[3]  Jen-Kuang Huang,et al.  Integrated system identification and state estimation for control of flexible space structures , 1992 .

[4]  B. Anderson,et al.  The generation of all q-Markov covers , 1987 .

[5]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[6]  Richard W. Longman,et al.  Comparison Of Several System Identification Methods For Flexible Structures , 1993 .

[7]  M. Phan,et al.  Linear system identification via an asymptotically stable observer , 1993 .

[8]  Khalid M. Mosalam,et al.  Statistical significance of modal parameters of bridge systems identified from strong motion data , 2005 .

[9]  Khalid M. Mosalam,et al.  Modal identification of bridge systems using state‐space methods , 2005 .

[10]  Jan R. Wright,et al.  An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification , 1987 .

[11]  James M. W. Brownjohn,et al.  Ambient vibration studies for system identification of tall buildings , 2003 .

[12]  Spilios D. Fassois,et al.  PARAMETRIC TIME-DOMAIN METHODS FOR THE IDENTIFICATION OF VIBRATING STRUCTURES—A CRITICAL COMPARISON AND ASSESSMENT , 2001 .

[13]  Paul Sas,et al.  Modal Analysis Theory and Testing , 2005 .

[14]  Daniel Rixen,et al.  Modified ERA method for operational modal analysis in the presence of harmonic excitations , 2006 .

[15]  C. Farrar,et al.  SYSTEM IDENTIFICATION FROM AMBIENT VIBRATION MEASUREMENTS ON A BRIDGE , 1997 .

[16]  Lennart Ljung Perspectives on System Identification , 2008 .

[17]  Prasenjit Mohanty,et al.  Operational modal analysis in the presence of harmonic excitation , 2004 .

[18]  David E. Culler,et al.  Design and Implementation of Scalable Wireless Sensor Network for Structural Monitoring , 2008 .

[19]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[20]  Erik A. Johnson,et al.  NATURAL EXCITATION TECHNIQUE AND EIGENSYSTEM REALIZATION ALGORITHM FOR PHASE I OF THE IASC-ASCE BENCHMARK PROBLEM: SIMULATED DATA , 2004 .

[21]  Shamim N. Pakzad,et al.  Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network , 2009 .

[22]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[23]  Guido De Roeck,et al.  Comparison of system identification methods using operational data of a bridge test , 1998 .

[24]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[25]  C. Sun,et al.  Vibration Damping of Structural Elements , 1995 .

[26]  Shamim N. Pakzad,et al.  Development and deployment of large scale wireless sensor network on a long-span bridge , 2010 .

[27]  Yunfeng Zhang,et al.  Prediction error method‐based second‐order structural identification algorithm in stochastic state space formulation , 2006 .