Neural maps versus salt-and-pepper organization in visual cortex

Theoretical neuroscientists have long been intrigued by the spatial patterns of neuronal selectivities observed in the visual cortices of many mammals, including primates. While theoretical studies have contributed significantly to our understanding of how the brain learns to see, recent experimental discoveries of the spatial irregularity of visual response properties in the rodent visual cortex have prompted new questions about the origin and functional significance of cortical maps. Characterizing the marked differences of cortical design principles among species and comparing them may provide us with a deeper understanding of primate and non-primate vision.

[1]  D. Coppola,et al.  Response to Comment on “Universality in the Evolution of Orientation Columns in the Visual Cortex“ , 2012, Science.

[2]  Leonard E. White,et al.  Vision and Cortical Map Development , 2007, Neuron.

[3]  Jack D Cowan,et al.  Symmetry induced coupling of cortical feature maps. , 2004, Physical review letters.

[4]  Morgane M. Roth,et al.  Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex , 2011, Front. Neural Circuits.

[5]  Y. Dan,et al.  Clonally Related Visual Cortical Neurons Show Similar Stimulus Feature Selectivity , 2012, Nature.

[6]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[7]  Ian Nauhaus,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[8]  Jianhua Cang,et al.  Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex , 2010, Neuron.

[9]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[10]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[11]  Li I. Zhang,et al.  Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells , 2011, Neuron.

[12]  Bruno Mota,et al.  Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains , 2013, Front. Neuroanat..

[13]  K. Martin,et al.  Functional Heterogeneity in Neighboring Neurons of Cat Primary Visual Cortex in Response to Both Artificial and Natural Stimuli , 2013, The Journal of Neuroscience.

[14]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[15]  Nicholas J. Priebe,et al.  Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[16]  Klaus Obermayer,et al.  Afferent specificity, feature specific connectivity influence orientation selectivity: A computational study in mouse primary visual cortex , 2013, 1301.0996.

[17]  J. Cowan,et al.  Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules , 2012, Journal of mathematical biology.

[18]  C. von der Malsburg,et al.  Establishment of a Scaffold for Orientation Maps in Primary Visual Cortex of Higher Mammals , 2008, The Journal of Neuroscience.

[19]  F. Helmchen,et al.  Steady or changing? Long-term monitoring of neuronal population activity , 2013, Trends in Neurosciences.

[20]  Ifije E. Ohiorhenuan,et al.  Sparse coding and high-order correlations in fine-scale cortical networks , 2010, Nature.

[21]  Stephen D. Van Hooser,et al.  Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal , 2005, The Journal of Neuroscience.

[22]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[24]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[25]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[26]  Haim Sompolinsky,et al.  Course 9 - Irregular Activity in Large Networks of Neurons , 2005 .

[27]  Henry S. Greenside,et al.  Pattern Formation and Dynamics in Nonequilibrium Systems , 2004 .

[28]  Wei Ji Ma,et al.  A Fast and Simple Population Code for Orientation in Primate V1 , 2012, The Journal of Neuroscience.

[29]  Fred Wolf,et al.  Pinwheel stabilization by ocular dominance segregation. , 2009, Physical review letters.

[30]  Matthias Bethge,et al.  How Sensitive Is the Human Visual System to the Local Statistics of Natural Images , 2012 .

[31]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Fred Wolf,et al.  Coverage, continuity, and visual cortical architecture , 2011, Neural systems & circuits.

[33]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[34]  Nicholas J. Priebe,et al.  Emergence of Orientation Selectivity in the Mammalian Visual Pathway , 2013, The Journal of Neuroscience.

[35]  N. Swindale,et al.  Receptive field and orientation scatter studied by tetrode recordings in cat area 17 , 1999, Visual Neuroscience.

[36]  S. Shi,et al.  Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly , 2012, Nature.

[37]  Fred Wolf,et al.  Interareal coordination of columnar architectures during visual cortical development , 2008, Proceedings of the National Academy of Sciences.

[38]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  R. Reid,et al.  Local Diversity and Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex , 2011, The Journal of Neuroscience.

[40]  Hongbo Jia,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[41]  A. Sarti,et al.  An uncertainty principle underlying the functional architecture of V1 , 2012, Journal of Physiology-Paris.

[42]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[43]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[44]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[45]  M. Stryker,et al.  Development and Plasticity of the Primary Visual Cortex , 2012, Neuron.

[46]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[47]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[48]  D. Ringach,et al.  Retinal origin of orientation maps in visual cortex , 2011, Nature Neuroscience.

[49]  Diego Contreras,et al.  The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map. , 2014, Cerebral cortex.

[50]  B. Cragg The density of synapses and neurones in the motor and visual areas of the cerebral cortex. , 1967, Journal of anatomy.

[51]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[52]  Sompolinsky Haim Sensory Selectivity in Random Cortical Circuits , 2011 .

[53]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[54]  M. V. Tsodyks,et al.  Intracortical origin of visual maps , 2001, Nature Neuroscience.

[55]  Daniel N. Hill,et al.  Development of Direction Selectivity in Mouse Cortical Neurons , 2011, Neuron.

[56]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[57]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[58]  Eero P. Simoncelli,et al.  A functional and perceptual signature of the second visual area in primates , 2013, Nature Neuroscience.

[59]  Alex S. Ferecskó,et al.  Model‐based analysis of excitatory lateral connections in the visual cortex , 2006, The Journal of comparative neurology.

[60]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[61]  F. Wolf Symmetry, multistability, and long-range interactions in brain development. , 2005, Physical review letters.

[62]  Patrick R Hof,et al.  Functional Trade-Offs in White Matter Axonal Scaling , 2008, The Journal of Neuroscience.

[63]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[64]  S. V. Hooser Similarity and Diversity in Visual Cortex: Is There a Unifying Theory of Cortical Computation? , 2007 .

[65]  Mark Hübener,et al.  Critical-period plasticity in the visual cortex. , 2012, Annual review of neuroscience.

[66]  Jon H. Kaas,et al.  Reconstructing the Organization of Neocortex of the First Mammals and Subsequent Modifications , 2007 .

[67]  M. Brecht,et al.  Cytoarchitecture, areas, and neuron numbers of the Etruscan Shrew cortex , 2012, The Journal of comparative neurology.

[68]  J. Hutsler,et al.  Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species , 2005, Brain Research.

[69]  Nicholas J. Priebe,et al.  Mechanisms of Neuronal Computation in Mammalian Visual Cortex , 2012, Neuron.

[70]  Y. Chino,et al.  Receptive‐field properties of V1 and V2 neurons in mice and macaque monkeys , 2010, The Journal of comparative neurology.

[71]  Andrea L. Cirranello,et al.  The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals , 2013, Science.

[72]  R Clay Reid,et al.  From Functional Architecture to Functional Connectomics , 2012, Neuron.

[73]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[74]  W. Welker,et al.  Comparisons between brains of a large and a small hystricomorph rodent: capybara, Hydrochoerus and guinea pig, Cavia; neocortical projection regions and measurements of brain subdivisions. , 1976, Brain, behavior and evolution.

[75]  Fredric M. Wolf,et al.  Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies , 2012, PLoS Comput. Biol..

[76]  R. Fergus,et al.  Learning invariant features through topographic filter maps , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[78]  R. Lund,et al.  Receptive field properties of single neurons in rat primary visual cortex. , 1999, Journal of neurophysiology.

[79]  A. Burkhalter,et al.  Organization of local axon collaterals of efferent projection neurons in rat visual cortex , 1990, The Journal of comparative neurology.

[80]  D. Hansel,et al.  The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map , 2012, The Journal of Neuroscience.

[81]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[82]  Ian Nauhaus,et al.  Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2012, Nature Neuroscience.

[83]  Siegrid Löwel,et al.  Postnatal growth and column spacing in cat primary visual cortex , 2003, Experimental Brain Research.

[84]  D. Fitzpatrick,et al.  Spatial coding of position and orientation in primary visual cortex , 2002, Nature Neuroscience.

[85]  C. W. Picanço-Diniz,et al.  Contralateral visual field representation in area 17 of the cerebral cortex of the agouti: A comparison between the cortical magnification factor and retinal ganglion cell distribution , 1991, Neuroscience.

[86]  Fredric M. Wolf,et al.  Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis , 2011, PLoS Comput. Biol..

[87]  C. Clopath,et al.  The emergence of functional microcircuits in visual cortex , 2013, Nature.

[88]  C. Gilbert,et al.  Distortions of visuotopic map match orientation singularities in primary visual cortex , 1997, Nature.

[89]  G. Striedter Principles of brain evolution. , 2005 .

[90]  M. Volgushev,et al.  Independence of visuotopic representation and orientation map in the visual cortex of the cat , 2003, The European journal of neuroscience.

[91]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[92]  K. Ohki,et al.  Similarity of Visual Selectivity among Clonally Related Neurons in Visual Cortex , 2012, Neuron.

[93]  Amiram Grinvald,et al.  Visual cortex maps are optimized for uniform coverage , 2000, Nature Neuroscience.

[94]  Christos Dimitrakakis,et al.  Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex , 2013, PLoS Comput. Biol..