暂无分享,去创建一个
[1] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[2] Dimitris Achlioptas,et al. Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[3] Aravind Srinivasan,et al. Partial Resampling to Approximate Covering Integer Programs , 2015, SODA.
[4] T. Coleman,et al. The cyclic coloring problem and estimation of spare hessian matrices , 1986 .
[5] Linyuan Lu,et al. A new asymptotic enumeration technique: the Lovasz Local Lemma , 2009, 0905.3983.
[6] Bernhard Haeupler,et al. Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs , 2015, SODA.
[7] Aravind Srinivasan,et al. New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[8] Themis Gouleakis,et al. Algorithmic Improvements of the Lovász Local Lemma via Cluster Expansion , 2012, FSTTCS.
[9] David G. Harris. Lopsidependency in the Moser-Tardos Framework , 2015, SODA.
[10] Thomas P. Hayes,et al. A non-Markovian coupling for randomly sampling colorings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[11] Hsin-Hao Su,et al. Distributed algorithms for the Lovász local lemma and graph coloring , 2014, Distributed Computing.
[12] Jan Vondrák,et al. Computing the independence polynomial in Shearer's region for the LLL , 2016, ArXiv.
[13] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[14] Dimitris Achlioptas,et al. Focused Stochastic Local Search and the Lovász Local Lemma , 2015, SODA.
[15] Bruce A. Reed,et al. Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.
[16] Thomas F. Coleman,et al. Estimation of sparse hessian matrices and graph coloring problems , 1982, Math. Program..
[17] Oded Goldreich,et al. Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..
[18] Aldo Procacci,et al. An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.
[19] P. Erdos-L Lovász. Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .
[20] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[21] Aldo Procacci,et al. Improved bounds on coloring of graphs , 2010, Eur. J. Comb..
[22] Robin A. Moser. A constructive proof of the Lovász local lemma , 2008, STOC '09.
[23] Eric Vigoda,et al. Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[24] Thomas P. Hayes,et al. Randomly coloring planar graphs with fewer colors than the maximum degree , 2007, STOC '07.
[25] David G. Harris. New bounds for the Moser-Tardos distribution: Beyond the Lovasz Local Lemma , 2016, ArXiv.
[26] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[27] Leslie Ann Goldberg,et al. Inapproximability of the Independent Set Polynomial Below the Shearer Threshold , 2017, ICALP.
[28] Mark Jerrum,et al. A Very Simple Algorithm for Estimating the Number of k-Colorings of a Low-Degree Graph , 1995, Random Struct. Algorithms.
[29] James B. Shearer,et al. On a problem of spencer , 1985, Comb..
[30] Karthekeyan Chandrasekaran,et al. Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.
[31] Mario Szegedy,et al. A Sharper Local Lemma with Improved Applications , 2012, APPROX-RANDOM.
[32] Dimitrios M. Thilikos,et al. Acyclic edge coloring through the Lovász Local Lemma , 2014, Theor. Comput. Sci..
[33] David G. Harris. Parallel algorithms for the Lopsided Lovász Local Lemma , 2017, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.
[34] Wesley Pegden,et al. An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..
[35] Aravind Srinivasan,et al. Algorithmic and Enumerative Aspects of the Moser-Tardos Distribution , 2015, SODA.
[36] Martin E. Dyer,et al. Randomly coloring constant degree graphs , 2004, Random Struct. Algorithms.
[37] Aline Parreau,et al. Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..
[38] Aravind Srinivasan,et al. A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.
[39] Mario Szegedy,et al. Moser and tardos meet Lovász , 2011, STOC.
[40] Noga Alon,et al. A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.
[41] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.
[42] Jan Vondrák,et al. An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[43] Christian Scheideler,et al. Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.