The Algorithmic LLL and the Witness Tree Lemma

We consider the recent works of \cite{AIJACM,HV,Harmonic} that provide tools for analyzing focused stochastic local search algorithms that arise from algorithmizations of the Lovasz Local Lemma \cite{LLL} (LLL) in general probability spaces. These are algorithms which search a state space probabilistically by repeatedly selecting a "flaw" that is currently present and moving to a random nearby state in an effort to address it and, eventually, reach a flawless state. While the original Moser-Tardos \cite{MT} (MT) algorithm is amenable to the analysis of these abstract frameworks, many follow-up results \cite{Haeupler_jacm,EnuHarris,szege_meet,determ,distributed,ParallelHarris} that further enhance, or exploit, our understanding of the MT process are not transferable to these general settings. Mainly, this is because a key ingredient of the original analysis of Moser and Tardos, the \emph{witness tree lemma}, does not longer hold. In this work, we show that we can recover the witness tree lemma in the "commutative setting". The latter was recently introduced by Kolmogorov \cite{Kolmofocs} and captures the vast majority of the LLL applications. Armed with it, we focus on studying properties of commutative algorithms and give several applications. Among other things, we are able to generalize and extend to the commutative setting the main result of \cite{Haeupler_jacm} which states that the output of the MT algorithm well-approximates the conditional LLL-distribution, i.e., the distribution obtained by conditioning on all bad events being avoided.

[1]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[2]  Dimitris Achlioptas,et al.  Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[3]  Aravind Srinivasan,et al.  Partial Resampling to Approximate Covering Integer Programs , 2015, SODA.

[4]  T. Coleman,et al.  The cyclic coloring problem and estimation of spare hessian matrices , 1986 .

[5]  Linyuan Lu,et al.  A new asymptotic enumeration technique: the Lovasz Local Lemma , 2009, 0905.3983.

[6]  Bernhard Haeupler,et al.  Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs , 2015, SODA.

[7]  Aravind Srinivasan,et al.  New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[8]  Themis Gouleakis,et al.  Algorithmic Improvements of the Lovász Local Lemma via Cluster Expansion , 2012, FSTTCS.

[9]  David G. Harris Lopsidependency in the Moser-Tardos Framework , 2015, SODA.

[10]  Thomas P. Hayes,et al.  A non-Markovian coupling for randomly sampling colorings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[11]  Hsin-Hao Su,et al.  Distributed algorithms for the Lovász local lemma and graph coloring , 2014, Distributed Computing.

[12]  Jan Vondrák,et al.  Computing the independence polynomial in Shearer's region for the LLL , 2016, ArXiv.

[13]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[14]  Dimitris Achlioptas,et al.  Focused Stochastic Local Search and the Lovász Local Lemma , 2015, SODA.

[15]  Bruce A. Reed,et al.  Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.

[16]  Thomas F. Coleman,et al.  Estimation of sparse hessian matrices and graph coloring problems , 1982, Math. Program..

[17]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[18]  Aldo Procacci,et al.  An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.

[19]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[20]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[21]  Aldo Procacci,et al.  Improved bounds on coloring of graphs , 2010, Eur. J. Comb..

[22]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[23]  Eric Vigoda,et al.  Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[24]  Thomas P. Hayes,et al.  Randomly coloring planar graphs with fewer colors than the maximum degree , 2007, STOC '07.

[25]  David G. Harris New bounds for the Moser-Tardos distribution: Beyond the Lovasz Local Lemma , 2016, ArXiv.

[26]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[27]  Leslie Ann Goldberg,et al.  Inapproximability of the Independent Set Polynomial Below the Shearer Threshold , 2017, ICALP.

[28]  Mark Jerrum,et al.  A Very Simple Algorithm for Estimating the Number of k-Colorings of a Low-Degree Graph , 1995, Random Struct. Algorithms.

[29]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[30]  Karthekeyan Chandrasekaran,et al.  Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.

[31]  Mario Szegedy,et al.  A Sharper Local Lemma with Improved Applications , 2012, APPROX-RANDOM.

[32]  Dimitrios M. Thilikos,et al.  Acyclic edge coloring through the Lovász Local Lemma , 2014, Theor. Comput. Sci..

[33]  David G. Harris Parallel algorithms for the Lopsided Lovász Local Lemma , 2017, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.

[34]  Wesley Pegden,et al.  An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..

[35]  Aravind Srinivasan,et al.  Algorithmic and Enumerative Aspects of the Moser-Tardos Distribution , 2015, SODA.

[36]  Martin E. Dyer,et al.  Randomly coloring constant degree graphs , 2004, Random Struct. Algorithms.

[37]  Aline Parreau,et al.  Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..

[38]  Aravind Srinivasan,et al.  A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.

[39]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[40]  Noga Alon,et al.  A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.

[41]  Aravind Srinivasan Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.

[42]  Jan Vondrák,et al.  An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[43]  Christian Scheideler,et al.  Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.