Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2

Abstract In this paper we investigate the asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2 and in particular existence and uniqueness results are established. Two examples are given to illustrate our results.

[1]  Asier Ibeas,et al.  On a New Epidemic Model with Asymptomatic and Dead-Infective Subpopulations with Feedback Controls Useful for Ebola Disease , 2017 .

[2]  Jinrong Wang,et al.  Fractional-Order Equations and Inclusions , 2017 .

[3]  Claudio Cuevas,et al.  Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infinite delay , 2010 .

[4]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[5]  Qianqian Wang,et al.  The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 , 2012, Comput. Math. Appl..

[6]  Hernán R. Henríquez,et al.  On S-asymptotically ω-periodic functions on Banach spaces and applications , 2008 .

[7]  Mohammad Saleh Tavazoei,et al.  A proof for non existence of periodic solutions in time invariant fractional order systems , 2009, Autom..

[8]  Yong Zhou,et al.  Weak solutions of the time-fractional Navier-Stokes equations and optimal control , 2017, Comput. Math. Appl..

[9]  Yong Zhou,et al.  Periodic Solutions and -Asymptotically Periodic Solutions to Fractional Evolution Equations , 2017 .

[10]  JinRong Wang,et al.  A Uniform Method to Ulam–Hyers Stability for Some Linear Fractional Equations , 2016 .

[11]  Yong Zhou Basic Theory of Fractional Differential Equations , 2014 .

[12]  Josef Diblík,et al.  Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations , 2015, Appl. Math. Comput..

[13]  Donal O'Regan,et al.  On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses , 2018 .

[14]  Hernán R. Henríquez,et al.  Asymptotically periodic solutions of fractional differential equations , 2014, Appl. Math. Comput..

[15]  Claudio Cuevas,et al.  S-asymptotically omega-periodic solutions of semilinear fractional integro-differential equations , 2009, Appl. Math. Lett..

[16]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[17]  JinRong Wang,et al.  Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces , 2015, Appl. Math. Comput..

[18]  Yong Zhou,et al.  On the time-fractional Navier-Stokes equations , 2017, Comput. Math. Appl..

[19]  Claudio Cuevas Existence of S-Asymptotically !-Periodic Solutions for Two-times Fractional Order Differential Equations ∗ , 2013 .

[20]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[21]  Eva Kaslik,et al.  Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions☆ , 2012 .

[22]  JinRong Wang,et al.  Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations , 2013, Commun. Nonlinear Sci. Numer. Simul..

[23]  Michelle Pierri,et al.  Weighted -Asymptotically -Periodic Solutions of a Class of Fractional Differential Equations , 2010 .

[24]  M. Yazdani,et al.  On the existence of periodic solutions in time-invariant fractional order systems , 2011, Autom..

[25]  Jinrong Wang,et al.  Asymptotically periodic solutions for Caputo type fractional evolution equations , 2018, Fractional Calculus and Applied Analysis.