Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces
暂无分享,去创建一个
[1] S. Moskow,et al. First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[2] Ivo Babuska,et al. Generalized p-FEM in homogenization , 2000, Numerische Mathematik.
[3] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[4] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[5] Ivan Lunati,et al. Effects of pore volume-transmissivity correlation on transport phenomena. , 2003, Journal of contaminant hydrology.
[6] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[7] Michael Vogelius,et al. First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..
[8] C. Schwab,et al. Generalized FEM for Homogenization Problems , 2002 .
[9] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[10] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[11] Björn Engquist,et al. Computation of oscillatory solutions to partial differential equations , 1987 .
[12] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[13] Akihiro Kusumi,et al. Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.
[14] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[15] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[16] Schmitz,et al. Diffusion in the presence of topological disorder. , 1994, Physical review letters.
[17] Cédric Gérot,et al. D'une surface triangulée à une surface représentée par cartes , 2001 .
[18] Pierre M. Adler,et al. Real porous media: local geometry and transports , 2002, Poromechanics II.
[19] P. Donato,et al. An introduction to homogenization , 2000 .
[20] Pierre M. Adler,et al. PERCOLATION AND CONDUCTIVITY OF SELF-AFFINE FRACTURES , 1999 .
[21] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[22] R Marabini,et al. Correlation of topographic surface and volume data from three-dimensional electron microscopy. , 2001, Journal of structural biology.
[23] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .