Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces

We present a finite element method for the numerical solution of diffusion problems on rough surfaces. The problem is transformed to an elliptic homogenization problem in a two dimensional parameter domain with a rapidly oscillating diffusion tensor and source term. The finite element method is based on the heterogeneous multiscale methods of E and Engquist [Commun. Math. Sci., 1 (2003), pp. 87--132]. For periodic surface roughness of scale $\varepsilon$ and amplitude $O(\varepsilon)$, the method converges at a robust rate, i.e., independent of $\varepsilon$, to the homogenized solution.

[1]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Ivo Babuska,et al.  Generalized p-FEM in homogenization , 2000, Numerische Mathematik.

[3]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  Ivan Lunati,et al.  Effects of pore volume-transmissivity correlation on transport phenomena. , 2003, Journal of contaminant hydrology.

[6]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[7]  Michael Vogelius,et al.  First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..

[8]  C. Schwab,et al.  Generalized FEM for Homogenization Problems , 2002 .

[9]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[10]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[11]  Björn Engquist,et al.  Computation of oscillatory solutions to partial differential equations , 1987 .

[12]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[13]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[14]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[15]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[16]  Schmitz,et al.  Diffusion in the presence of topological disorder. , 1994, Physical review letters.

[17]  Cédric Gérot,et al.  D'une surface triangulée à une surface représentée par cartes , 2001 .

[18]  Pierre M. Adler,et al.  Real porous media: local geometry and transports , 2002, Poromechanics II.

[19]  P. Donato,et al.  An introduction to homogenization , 2000 .

[20]  Pierre M. Adler,et al.  PERCOLATION AND CONDUCTIVITY OF SELF-AFFINE FRACTURES , 1999 .

[21]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[22]  R Marabini,et al.  Correlation of topographic surface and volume data from three-dimensional electron microscopy. , 2001, Journal of structural biology.

[23]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .