Rapid Activity-Dependent Modifications in Synaptic Structure and Function Require Bidirectional Wnt Signaling

Activity-dependent modifications in synapse structure play a key role in synaptic development and plasticity, but the signaling mechanisms involved are poorly understood. We demonstrate that glutamatergic Drosophila neuromuscular junctions undergo rapid changes in synaptic structure and function in response to patterned stimulation. These changes, which depend on transcription and translation, include formation of motile presynaptic filopodia, elaboration of undifferentiated varicosities, and potentiation of spontaneous release frequency. Experiments indicate that a bidirectional Wnt/Wg signaling pathway underlies these changes. Evoked activity induces Wnt1/Wg release from synaptic boutons, which stimulates both a postsynaptic DFz2 nuclear import pathway as well as a presynaptic pathway involving GSK-3beta/Shaggy. Our findings suggest that bidirectional Wg signaling operates downstream of synaptic activity to induce modifications in synaptic structure and function. We propose that activation of the postsynaptic Wg pathway is required for the assembly of the postsynaptic apparatus, while activation of the presynaptic Wg pathway regulates cytoskeletal dynamics.

[1]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[2]  Karl Deisseroth,et al.  Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology , 2001, Nature Neuroscience.

[3]  E. Gundelfinger,et al.  Postsynaptic Membrane Addition Depends on the Discs-Large-Interacting t-SNARE Gtaxin , 2007, The Journal of Neuroscience.

[4]  Tobias M. Rasse,et al.  Glutamate receptor dynamics organizing synapse formation in vivo , 2005, Nature Neuroscience.

[5]  C. Nüsslein-Volhard,et al.  Genes affecting the segmental subdivision of the Drosophila embryo. , 1985, Cold Spring Harbor symposia on quantitative biology.

[6]  Bai Lu,et al.  BDNF and activity-dependent synaptic modulation. , 2003, Learning & memory.

[7]  Shao-Jun Tang,et al.  Activity-dependent Synaptic Wnt Release Regulates Hippocampal Long Term Potentiation* , 2006, Journal of Biological Chemistry.

[8]  Bulent Ataman,et al.  Wingless Signaling at Synapses Is Through Cleavage and Nuclear Import of Receptor DFrizzled2 , 2005, Science.

[9]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[10]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[11]  Jun Yao,et al.  Actin-Dependent Activation of Presynaptic Silent Synapses Contributes to Long-Term Synaptic Plasticity in Developing Hippocampal Neurons , 2006, The Journal of Neuroscience.

[12]  Bulent Ataman,et al.  Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Goodman,et al.  Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. III. CREB Is Necessary for Presynaptic Functional Plasticity , 1996, Neuron.

[14]  G. Marqués,et al.  Morphogens and synaptogenesis in Drosophila. , 2005, Journal of neurobiology.

[15]  S. Hallermann,et al.  Active zone assembly and synaptic release. , 2006, Biochemical Society transactions.

[16]  Chun-Fang Wu,et al.  A MODIFIED MINIMAL HEMOLYMPH-LIKE SOLUTION, HL3.1, FOR PHYSIOLOGICAL RECORDINGS AT THE NEUROMUSCULAR JUNCTIONS OF NORMAL AND MUTANT DROSOPHILA LARVAE , 2004, Journal of neurogenetics.

[17]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[18]  M. Bourouis Targeted increase in shaggy activity levels blocks wingless signaling , 2002, Genesis.

[19]  R. Malenka,et al.  Beta-catenin is critical for dendritic morphogenesis. , 2003, Nature neuroscience.

[20]  W. A. Johnson,et al.  Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. , 1997, Development.

[21]  R. Moon,et al.  The ups and downs of Wnt signaling in prevalent neurological disorders , 2006, Oncogene.

[22]  Bo Guan,et al.  Regulation of Synapse Structure and Function by the Drosophila Tumor Suppressor Gene dlg , 1996, Neuron.

[23]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[24]  Richard D. Fetter,et al.  Watching a Synapse Grow Noninvasive Confocal Imaging of Synaptic Growth in Drosophila , 1999, Neuron.

[25]  S. Benzer,et al.  Paralysis and early death in cysteine string protein mutants of Drosophila. , 1994, Science.

[26]  Yves Grau,et al.  Shaggy, the Homolog of Glycogen Synthase Kinase 3, Controls Neuromuscular Junction Growth in Drosophila , 2004, The Journal of Neuroscience.

[27]  Y. Jan,et al.  Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Y. Koh,et al.  Regulation of DLG Localization at Synapses by CaMKII-Dependent Phosphorylation , 1999, Cell.

[29]  V. Budnik,et al.  The Drosophila Wnt, Wingless, Provides an Essential Signal for Pre- and Postsynaptic Differentiation , 2002, Cell.

[30]  Benjamin H White,et al.  Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Ikeda,et al.  Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  E. Kandel The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses , 2001, Science.

[33]  B. Eickholt,et al.  An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling , 2002, The Journal of cell biology.

[34]  C. Goodman,et al.  Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release , 1997, Neuron.

[35]  Bulent Ataman,et al.  Fasciclin II Signals New Synapse Formation through Amyloid Precursor Protein and the Scaffolding Protein dX11/Mint , 2005, The Journal of Neuroscience.

[36]  J. Steinert,et al.  Experience-Dependent Formation and Recruitment of Large Vesicles from Reserve Pool , 2006, Neuron.

[37]  R. Zucker Minis: Whence and Wherefore? , 2005, Neuron.

[38]  T. Carew,et al.  Differential induction of long-term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. , 1998, Learning & memory.

[39]  Alcino J. Silva,et al.  Spaced training induces normal long-term memory in CREB mutant mice , 1997, Current Biology.

[40]  A. M. Arias,et al.  The wingless signalling pathway and the patterning of the wing margin in Drosophila. , 1994, Development.

[41]  V. Budnik,et al.  Regulation of Synaptic Plasticity and Synaptic Vesicle Dynamics by the PDZ Protein Scribble , 2002, The Journal of Neuroscience.

[42]  A. Dunaevsky,et al.  Spine motility: a means towards an end? , 2003, Trends in Neurosciences.

[43]  V. Budnik,et al.  Plasticity and second messengers during synapse development. , 2006, International review of neurobiology.

[44]  T. Soderling,et al.  Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2 , 2006, Neuron.

[45]  Richard D Fetter,et al.  Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. II. Fasciclin II Controls Presynaptic Structural Plasticity , 1996, Neuron.

[46]  C. Klämbt,et al.  The Drosophila microtubule associated protein Futsch is phosphorylated by Shaggy/Zeste-white 3 at an homologous GSK3β phosphorylation site in MAP1B , 2006, Molecular and Cellular Neuroscience.

[47]  Richard D Fetter,et al.  Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. I. Fasciclin II Controls Synaptic Stabilization and Growth , 1996, Neuron.

[48]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[49]  K. Kalil,et al.  Touch and go: guidance cues signal to the growth cone cytoskeleton , 2005, Current Opinion in Neurobiology.

[50]  T. Südhof,et al.  SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly , 2002, Science.

[51]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[52]  Arvonn Tully,et al.  Activity-dependent synaptic capture of transiting peptidergic vesicles , 2006, Nature Neuroscience.

[53]  P. Salinas,et al.  Signalling in neural development: WNTS in the vertebrate nervous system: from patterning to neuronal connectivity , 2005, Nature Reviews Neuroscience.

[54]  E. Kavalali,et al.  Seeking a function for spontaneous neurotransmission , 2006, Nature Neuroscience.

[55]  Bill Adolfsen,et al.  Retrograde Signaling by Syt 4 Induces Presynaptic Release and Synapse-Specific Growth , 2005, Science.

[56]  Y. Zhong,et al.  Morphological plasticity of motor axons in Drosophila mutants with altered excitability , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  K. Ikeda,et al.  Calcium-induced translocation of synaptic vesicles to the active site , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  C. Govind,et al.  Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. , 1993, Journal of neurobiology.

[59]  B. Ganetzky,et al.  Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster , 1980, Nature.

[60]  V. Budnik,et al.  Ultrastructure of neuromuscular junctions in Drosophila: comparison of wild type and mutants with increased excitability. , 1993, Journal of neurobiology.

[61]  J. Renger,et al.  Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions , 1994, Journal of Comparative Physiology A.

[62]  Ronald L. Davis,et al.  Drosophila α/β Mushroom Body Neurons Form a Branch-Specific, Long-Term Cellular Memory Trace after Spaced Olfactory Conditioning , 2006, Neuron.

[63]  T. Dale,et al.  A divergent canonical WNT-signaling pathway regulates microtubule dynamics , 2004, The Journal of cell biology.

[64]  N. Fredj,et al.  Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release , 2006, The Journal of cell biology.

[65]  Arvonn Tully,et al.  Activity-dependent liberation of synaptic neuropeptide vesicles , 2005, Nature Neuroscience.

[66]  Aaron DiAntonio,et al.  Postsynaptic PKA Controls Quantal Size and Reveals a Retrograde Signal that Regulates Presynaptic Transmitter Release in Drosophila , 1998, Neuron.

[67]  Ronald L. Davis,et al.  Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. , 2006, Neuron.

[68]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[69]  P. Gordon-Weeks,et al.  Glycogen synthase kinase 3β and the regulation of axon growth , 2004 .

[70]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[71]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[72]  A. Diantonio,et al.  Preferential Localization of Glutamate Receptors Opposite Sites of High Presynaptic Release , 2004, Current Biology.

[73]  V. Budnik,et al.  Wnts: up-and-coming at the synapse , 2007, Trends in Neurosciences.