Diffusion Equations over Arbitrary Triangulated Surfaces for Filtering and Texture Applications

In computer graphics, triangular mesh representations of surfaces have become very popular. Compared with parametric and implicit forms of surfaces, triangular mesh surfaces have many advantages such as being easy to render, being convenient to store, and having the ability to model geometric objects with arbitrary topology. In this paper, we are interested in data processing over triangular mesh surfaces through partial differential equations (PDEs). We study several diffusion equations over triangular mesh surfaces and present corresponding numerical schemes to solve them. Our methods work for triangular mesh surfaces with arbitrary geometry (the angles of each triangle are arbitrary) and topology (open meshes or closed meshes of arbitrary genus). Besides the flexibility, our methods are efficient due to the implicit/semi-implicit time discretization. We finally apply our methods to several filtering and texture applications such as image processing, texture generation, and regularization of harmonic maps over triangular mesh surfaces. The results demonstrate the flexibility and effectiveness of our methods.

[1]  Jiansong Deng,et al.  Inpainting Images on Implicit Surfaces , 2005 .

[2]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[3]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[4]  Célia A. Zorzo Barcelos,et al.  Image inpainting and denoising by nonlinear partial differential equations , 2003, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003).

[5]  Joachim Weickert,et al.  A semidiscrete nonlinear scale-space theory and its relation to the Perona - Malik paradox , 1996, TFCV.

[6]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[7]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[8]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Tony F. Chan,et al.  A Robust Level Set Algorithm for Image Segmentation and its Parallel Implementation , 2002 .

[11]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[12]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[13]  Tony F. Chan,et al.  Variational PDE models in image processing , 2002 .

[14]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[15]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[16]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[17]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[19]  Yehoshua Y. Zeevi,et al.  Forward-and-backward diffusion processes for adaptive image enhancement and denoising , 2002, IEEE Trans. Image Process..

[20]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[21]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[22]  Olivier Devillers,et al.  Progressive lossless compression of arbitrary simplicial complexes , 2002, SIGGRAPH.

[23]  Jianhong Shen,et al.  Inpainting and the Fundamental Problem of Image Processing , 2002 .

[24]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[25]  Ron Kimmel,et al.  Enhancing Images Painted on Manifolds , 2005, Scale-Space.

[26]  Ron Kimmel,et al.  Segmentation of images painted on parametric manifolds , 2005, 2005 13th European Signal Processing Conference.

[27]  Gang Lin,et al.  An improved vertex caching scheme for 3D mesh rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[28]  A. Bossavit 'Generalized Finite Differences' in Computational Electromagnetics , 2001 .

[29]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[30]  Joachim Weickert,et al.  Scale-Space Properties of Regularization Methods , 1999, Scale-Space.

[31]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[32]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[33]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[34]  Célia A. Zorzo Barcelos,et al.  Level lines continuation based digital inpainting , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[35]  Qiang Du,et al.  Finite Volume Methods on Spheres and Spherical Centroidal Voronoi Meshes , 2005, SIAM J. Numer. Anal..

[36]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[37]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[38]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[39]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[40]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[41]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[42]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[43]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[45]  Qing Pan,et al.  Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..

[46]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[47]  Falai Chen,et al.  Fast data extrapolating , 2007 .

[48]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[49]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[50]  Tony F. Chan,et al.  Total Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models , 2001, J. Vis. Commun. Image Represent..

[51]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[52]  Ron Kimmel,et al.  Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[53]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[54]  William H. Press,et al.  Numerical recipes in C , 2002 .

[55]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[56]  Yizhou Yu,et al.  Inviscid and incompressible fluid simulation on triangle meshes , 2004, Comput. Animat. Virtual Worlds.

[57]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..