BIOCOMBUSTIBLES Y BIOTECNOLOGÍA: LA YUCA (Manihot esculenta) COMO MODELO DE INVESTIGACIÓN

Los combustibles obtenidos a partir de materia vegetal, como el etanol y el biodiesel, estan tomando importancia en la dinamica energetica mundial, gracias principalmente a que son mas economicos y menos contaminantes del medio ambiente que los combustibles fosiles. El mercado de biocombustibles ha producido un incremento en las areas de cultivo tanto de plantas regularmente usadas como materia prima para su obtencion como de aquellas con potencial de ser nuevas fuentes de produccion, al igual que ha impulsado la investigacion basica orientada hacia el incremento en calidad y produccion de diferentes cultivos. Las plantas que almacenan cantidades importantes de almidon, azucares simples o aceites son el blanco principal para la produccion de biocombustibles, aunque nuevas tecnologias estan permitiendo la utilizacion de celulosa como materia prima. El cultivo de yuca (Manihot esculenta) esta ampliamente distribuido en toda la zona tropical y es la base alimenticia de cerca del 10% de la poblacion mundial. El alto contenido de almidon en las raices almacenadoras de la yuca hace de este cultivo una opcion para la obtencion de etanol. El uso de tecnicas de mejoramiento no convencional de variedades de yuca permitira la generacion de plantas mas aptas para la industria de biocombustibles. En este articulo de reflexion se revisa el estado actual de los biocombustibles a nivel mundial y nacional, y se comentan los beneficios y retos a afrontar en cuanto a las implicaciones respecto al medio ambiente y la alimentacion humana. Finalmente se discute el potencial de la yuca como fuente eficiente de materia prima para la obtencion de biocombustibles en Colombia.

[1]  R. Amutha,et al.  Production of ethanol from liquefied cassava starch using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. , 2001, Journal of bioscience and bioengineering.

[2]  J. Kossmann,et al.  Understanding and influencing starch biochemistry. , 2000, Critical reviews in biochemistry and molecular biology.

[3]  K. Olsen,et al.  Evidence on the origin of cassava: phylogeography of Manihot esculenta. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Michael Y. Galperin The quest for biofuels fuels genome sequencing , 2008, Environmental microbiology.

[5]  Kan Wang,et al.  Genetic engineering approaches to improve bioethanol production from maize. , 2007, Current opinion in biotechnology.

[6]  Havva Balat,et al.  Recent trends in global production and utilization of bio-ethanol fuel , 2009 .

[7]  C. Jansson,et al.  Expression patterns of the gene encoding starch branching enzyme II in the storage roots of cassava (Manihot esculenta Crantz) , 2003 .

[8]  S. Ball,et al.  From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. , 2003, Annual review of plant biology.

[9]  R. Wing,et al.  Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz) , 2004, Plant Molecular Biology.

[10]  J Villegas,et al.  Life cycle assessment of biofuels: energy and greenhouse gas balances. , 2009, Bioresource technology.

[11]  Chuanxin Sun,et al.  Cassava, a potential biofuel crop in (the) People’s Republic of China , 2009 .

[12]  R. Visser,et al.  Improved Cassava Starch by Antisense Inhibition of Granule-bound Starch Synthase I , 2005, Molecular Breeding.

[13]  Shabbir H. Gheewala,et al.  Fossil energy, environmental and cost performance of ethanol in Thailand. , 2008 .

[14]  Uzoma Ihemere,et al.  Genetic modification of cassava for enhanced starch production. , 2006, Plant biotechnology journal.

[15]  R. Brown,et al.  Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C3-C4 intermediate photosynthesis species , 1993, Photosynthesis Research.

[16]  Matti Parikka,et al.  Global biomass fuel resources , 2004 .

[17]  C. Martin,et al.  THE SYNTHESIS OF THE STARCH GRANULE. , 1997, Annual review of plant physiology and plant molecular biology.

[18]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[19]  C. Martin,et al.  Starch biosynthesis. , 1995, The Plant cell.

[20]  W. Clinton State of the Union Address , 2003 .

[21]  Chris Somerville,et al.  The Billion-Ton Biofuels Vision , 2006, Science.

[22]  Andrew D. Jones,et al.  Supporting Online Material for: Ethanol Can Contribute To Energy and Environmental Goals , 2006 .

[23]  S. Herrera Bonkers about biofuels , 2006, Nature Biotechnology.

[24]  R. Visser,et al.  Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato , 1993, Plant Molecular Biology.

[25]  Savitri Garivait,et al.  Full chain energy analysis of fuel ethanol from cassava in Thailand. , 2007, Environmental science & technology.

[26]  L. Lynd,et al.  Beneficial Biofuels—The Food, Energy, and Environment Trilemma , 2009, Science.

[27]  G. Edwards,et al.  Photosynthetic Characteristics of Cassava (Manihot esculenta Crantz), a C3 Species with Chlorenchymatous Bundle Sheath Cells , 1990 .

[28]  J. Goldemberg Ethanol for a Sustainable Energy Future , 2007, Science.

[29]  Jay K. Shetty,et al.  Technological advances in ethanol production. , 2005 .

[30]  R. Visser,et al.  Isolation and characterisation of cDNAs encoding the large and small subunits of ADP-glucose pyrophosphorylase from cassava (Manihot esculenta Crantz) , 2001, Euphytica.

[31]  Gengqiang Pu,et al.  Life cycle inventory and energy analysis of cassava-based Fuel ethanol in China , 2008 .

[32]  M. Delseny,et al.  Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray , 2005, Plant Molecular Biology.

[33]  N. J. Tonukari,et al.  Cassava and the future of starch , 2004 .

[34]  M. Galbe,et al.  Bio-ethanol--the fuel of tomorrow from the residues of today. , 2006, Trends in biotechnology.

[35]  M. Cotta,et al.  The U.S. corn ethanol industry: An overview of current technology and future prospects , 2002 .

[36]  M. El-Sharkawy Cassava biology and physiology , 2004, Plant Molecular Biology.

[37]  J. Mclaren Crop biotechnology provides an opportunity to develop a sustainable future. , 2005, Trends in biotechnology.

[38]  M. Curran,et al.  A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective , 2007 .

[39]  R. Visser,et al.  Cassava starch biosynthesis: new avenues for modifying starch quantity and quality , 1997, Euphytica.

[40]  J. Mathews Biofuels : What a Biopact between North and South could achieve , 2007 .

[41]  Paul Chavarriaga,et al.  Development and application of transgenic technologies in cassava , 2004, Plant Molecular Biology.

[42]  Charlotte Schubert,et al.  Can biofuels finally take center stage? , 2006, Nature Biotechnology.

[43]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Goldemberg,et al.  Are biofuels a feasible option , 2009 .

[45]  He Li,et al.  Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. , 2006 .

[46]  P. Waterhouse,et al.  Construct design for efficient, effective and high-throughput gene silencing in plants. , 2001, The Plant journal : for cell and molecular biology.

[47]  R. Service Biofuel Researchers Prepare to Reap a New Harvest , 2007, Science.

[48]  Ayhan Demirbas,et al.  Progress and recent trends in biofuels , 2007 .

[49]  R. Visser,et al.  Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava , 1992, Plant Molecular Biology.