Application of alicyclic β-amino acids in peptide chemistry

The self-organizing β-peptides have attracted considerable interest in the fields of foldamer chemistry and biochemistry. These compounds exhibit various stable secondary structure motifs that can be exploited to construct biologically active substances and nanostructured tertiary structures. The secondary structures can be controlled via the β-amino acid sequence, and cyclic β-amino acid residues play a crucial role in the design. The most important procedures for the preparation of cyclic β-amino acid monomers and peptides are discussed in this tutorial review. Besides the secondary structure design principles, the methods of folded structure detection are surveyed.

[1]  Tamás Beke,et al.  Toward a rational design of β‐peptide structures , 2006, J. Comput. Chem..

[2]  V. Branchadell,et al.  (+)- and (-)-2-aminocyclobutane-1-carboxylic acids and their incorporation into highly rigid beta-peptides: stereoselective synthesis and a structural study. , 2005, The Journal of organic chemistry.

[3]  S. Davies,et al.  The conjugate addition of enantiomerically pure lithium amides as homochiral ammonia equivalents: scope, limitations and synthetic applications , 2005 .

[4]  F. Fülöp,et al.  Synthesis of 3‐ and 4‐Hydroxy‐2‐aminocyclohexanecarboxylic Acids by Iodocyclization , 2005 .

[5]  M. Kanai,et al.  Catalytic enantioselective desymmetrization of meso-N-acylaziridines with TMSCN. , 2005, Journal of the American Chemical Society.

[6]  S. Gellman,et al.  Use of parallel synthesis to probe structure-activity relationships among 12-helical beta-peptides: evidence of a limit on antimicrobial activity. , 2005, Journal of the American Chemical Society.

[7]  M. Hahn,et al.  Alicyclic β-amino acids in Medicinal Chemistry , 2005, Amino Acids.

[8]  S. Chandrasekhar,et al.  Expanding the conformational pool of cis-β-sugar amino acid: accommodation of β-hGly motif in robust 14-helix , 2005 .

[9]  U. Diederichsen,et al.  Three‐Dimensional Organization of Helices: Design Principles for Nucleobase‐Functionalized β‐Peptides , 2005 .

[10]  S. Gellman,et al.  Application of Microwave Irradiation to the Synthesis of 14-Helical β-Peptides , 2005 .

[11]  R. Ortuño,et al.  Cyclobutane Biomolecules: Synthetic Approaches to Amino Acids, Peptides and Nucleosides , 2005 .

[12]  I. Mándity,et al.  Chain-length-dependent helical motifs and self-association of beta-peptides with constrained side chains. , 2005, Journal of the American Chemical Society.

[13]  R. Soengas,et al.  Stereocontrolled transformation of nitrohexofuranoses into cyclopentylamines via 2-oxabicyclo[2.2.1]heptanes. Part 2: Synthesis of (1S,2R,3S,4S,5R)-3,4,5-trihydroxy-2-aminocyclopentanecarboxylic acid , 2005 .

[14]  Joshua A. Kritzer,et al.  β-Peptides as inhibitors of protein–protein interactions , 2005 .

[15]  S. Nguyen,et al.  The Enantioselective Synthesis of Conformationally Constrained Cyclic β- Amino Acids , 2005 .

[16]  S. Gellman,et al.  Synthesis of 4,4-disubstituted 2-aminocyclopentanecarboxylic acid derivatives and their incorporation into 12-helical beta-peptides. , 2004, Organic letters.

[17]  F. Fülöp,et al.  A New Strategy To Produce β-Peptides: Use of Alicyclic β-Lactams , 2004 .

[18]  D. Seebach,et al.  The World of β‐ and γ‐Peptides Comprised of Homologated Proteinogenic Amino Acids and Other Components , 2004 .

[19]  S. Gellman,et al.  Unexpected Relationships between Structure and Function in α,β-Peptides: Antimicrobial Foldamers with Heterogeneous Backbones , 2004 .

[20]  A. Downard,et al.  Synthesis of Cyclic β-Amino Acid Esters from Methionine, Allylglycine, and Serine , 2004 .

[21]  F. Fülöp,et al.  Synthesis and transformation of novel cyclic β-amino acid derivatives from (+)-3-carene , 2003 .

[22]  C. Bolm,et al.  An alkaloid-mediated desymmetrization of meso-anhydrides via a nucleophilic ring opening with benzyl alcohol and its application in the synthesis of highly enantiomerically enriched β-amino acids , 2003 .

[23]  Xavier Daura,et al.  Circular dichroism spectra of β-peptides: sensitivity to molecular structure and effects of motional averaging , 2003, European Biophysics Journal.

[24]  T. Rana,et al.  Selective binding of TAR RNA by a Tat-derived beta-peptide. , 2003, Organic letters.

[25]  Ferenc Fülöp,et al.  Side-chain control of beta-peptide secondary structures. , 2003, European journal of biochemistry.

[26]  Xumu Zhang,et al.  Enantioselective hydrogenation of tetrasubstituted olefins of cyclic beta-(acylamino)acrylates. , 2003, Journal of the American Chemical Society.

[27]  F. Fülöp,et al.  Lipase-catalyzed enantioselective ring opening of unactivated alicyclic-fused beta-lactams in an organic solvent. , 2003, Organic letters.

[28]  S. Gellman,et al.  Structure-activity studies of 14-helical antimicrobial beta-peptides: probing the relationship between conformational stability and antimicrobial potency. , 2002, Journal of the American Chemical Society.

[29]  S. Gellman,et al.  Stereoselective synthesis of 3-substituted 2-aminocyclopentanecarboxylic acid derivatives and their incorporation into short 12-helical beta-peptides that fold in water. , 2002, Journal of the American Chemical Society.

[30]  W. DeGrado,et al.  Long-range interactions stabilize the fold of a non-natural oligomer. , 2002, Journal of the American Chemical Society.

[31]  H. Hofmann,et al.  Theoretical Prediction of Substituent Effects on the Intrinsic Folding Properties of β-Peptides , 2002 .

[32]  M. Hollósi,et al.  cis-2-aminocyclopentanecarboxylic acid oligomers adopt a sheetlike structure: switch from helix to nonpolar strand. , 2002, Angewandte Chemie.

[33]  S. Gellman,et al.  Toward beta-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. , 2001, Organic letters.

[34]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[35]  S. Gellman,et al.  An efficient route to either enantiomer of trans-2-aminocyclopentanecarboxylic acid. , 2001, The Journal of organic chemistry.

[36]  F. Fülöp,et al.  The chemistry of 2-aminocycloalkanecarboxylic acids. , 2001, Chemical reviews.

[37]  X. Daura,et al.  The beta-peptide hairpin in solution: conformational study of a beta-hexapeptide in methanol by NMR spectroscopy and MD simulation. , 2001, Journal of the American Chemical Society.

[38]  S. Gellman,et al.  (R,R,R)-2,5-diaminocylohexanecarboxylic acid, a building block for water-soluble, helix-forming beta-peptides. , 2000, The Journal of organic chemistry.

[39]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[40]  H. Hauser,et al.  β‐Peptides as Inhibitors of Small‐Intestinal Cholesterol and Fat Absorption , 1999 .

[41]  S. Gellman,et al.  Synthesis and Structural Characterization of Helix-Forming β-Peptides: trans-2-Aminocyclopentanecarboxylic Acid Oligomers , 1999 .

[42]  Yufen Zhao,et al.  Why nature chose a-amino acids , 1999 .

[43]  Yun-Dong Wu,et al.  Theoretical Studies of β-Peptide Models , 1998 .

[44]  M. Shibasaki,et al.  UTILIZATION OF HETEROBIMETALLIC COMPLEXES AS LEWIS ACIDS , 1998 .

[45]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[46]  F. Fülöp,et al.  Synthesis and opioid binding activity of dermorphin analogues containing cyclic β-amino acids , 1997, Neuropeptides.

[47]  Douglas R. Powell,et al.  Residue-based control of helix shape in β-peptide oligomers , 1997, Nature.

[48]  Daqian Xu,et al.  A PRACTICAL SYNTHESIS OF ENANTIOPURE ETHYL CIS-2-AMINO-1-CYCLOHEXANECARBOXYLATE VIA ASYMMETRIC REDUCTIVE AMINATION METHODOLOGY , 1997 .

[49]  F. Fülöp,et al.  Approach to highly enantiopure β-amino acid esters by using lipase catalysis in organic media , 1996 .