Precision therapy for lymphoma—current state and future directions

[1]  W. Choi,et al.  Akt activation confers an inferior survival in patients with activated B-cell subtype of diffuse large B-cell lymphoma: a report from The International DLBCL Rituximab-CHOP Consortium Program , 2014, Clinical Lymphoma, Myeloma & Leukemia.

[2]  H. Blum,et al.  Clinical Interpretation and Implications of Whole Genome Sequencing , 2014 .

[3]  C. Sander,et al.  Tumor Genetic Analyses of Patients with Metastatic Renal Cell Carcinoma and Extended Benefit from mTOR Inhibitor Therapy , 2014, Clinical Cancer Research.

[4]  G. Salles,et al.  PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. , 2014, The New England journal of medicine.

[5]  Min Kyung Sung,et al.  A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma , 2014, Nature Genetics.

[6]  S. Gabriel,et al.  Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. , 2014, Cancer discovery.

[7]  O. Nureki,et al.  Somatic RHOA mutation in angioimmunoblastic T cell lymphoma , 2014, Nature Genetics.

[8]  Sam Michael,et al.  High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells , 2014, Proceedings of the National Academy of Sciences.

[9]  Raul Rabadan,et al.  Genetics of follicular lymphoma transformation. , 2014, Cell reports.

[10]  L. Pasqualucci,et al.  SnapShot: diffuse large B cell lymphoma. , 2014, Cancer cell.

[11]  I. Lossos,et al.  Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas , 2014, Nature Genetics.

[12]  C. Womack,et al.  A matrix approach to guide IHC‐based tissue biomarker development in oncology drug discovery , 2014, The Journal of pathology.

[13]  Joshua M. Korn,et al.  Pharmacological and genomic profiling identifies NF-κB–targeted treatment strategies for mantle cell lymphoma , 2013, Nature Medicine.

[14]  M. Calaminici,et al.  Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma , 2013, Nature Genetics.

[15]  A. Jemal,et al.  Cancer statistics, 2014 , 2014, CA: a cancer journal for clinicians.

[16]  L. Staudt,et al.  Diffuse large B-cell lymphoma—treatment approaches in the molecular era , 2014, Nature Reviews Clinical Oncology.

[17]  A. Zelenetz,et al.  Profiling Genomic Alterations Of Diffuse Large B-Cell Lymphoma (DLBCL) At Diagnosis, Relapse, and Transformation, Using a Novel Clinical Diagnostic Targeted Sequencing Platform , 2013 .

[18]  Alex M. Fichtenholtz,et al.  Identification Of Actionable Genomic Alterations In Hematologic Malignancies By a Clinical Next Generation Sequencing-Based Assay , 2013 .

[19]  L. Staudt,et al.  Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Alex M. Fichtenholtz,et al.  Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing , 2013, Nature Biotechnology.

[21]  Manel Juan,et al.  Landscape of somatic mutations and clonal evolution in mantle cell lymphoma , 2013, Proceedings of the National Academy of Sciences.

[22]  Peilin Jia,et al.  Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers , 2013, Genome Medicine.

[23]  Y. Oki,et al.  Phase I Study of Panobinostat plus Everolimus in Patients with Relapsed or Refractory Lymphoma , 2013, Clinical Cancer Research.

[24]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[25]  S. Lowe,et al.  Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition , 2013, Genes & development.

[26]  K. Basso,et al.  MEF2B mutations lead to deregulated expression of the BCL6 oncogene in Diffuse Large B cell Lymphoma , 2013, Nature Immunology.

[27]  Steven J. M. Jones,et al.  Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. , 2013, Blood.

[28]  Michael L. Wang,et al.  Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. , 2013, The New England journal of medicine.

[29]  I. Ostrovnaya,et al.  Phase II study of everolimus in metastatic urothelial cancer , 2013, BJU international.

[30]  Juthamas Sukbuntherng,et al.  Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. , 2013, The New England journal of medicine.

[31]  G. Pinkus,et al.  Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry , 2013, PloS one.

[32]  Jan Bogaerts,et al.  Designing transformative clinical trials in the cancer genome era. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  W. Choi,et al.  MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. , 2013, Blood.

[34]  O. Elemento,et al.  EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. , 2013, Cancer cell.

[35]  Fang Wang,et al.  Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation , 2013, Science.

[36]  Steven J. M. Jones,et al.  Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. , 2013, Blood.

[37]  W. Kaelin,et al.  What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. , 2013, Genes & development.

[38]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[39]  S. Cory,et al.  ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. , 2013, Blood.

[40]  L. Staudt,et al.  Targeting pathological B cell receptor signalling in lymphoid malignancies , 2013, Nature Reviews Drug Discovery.

[41]  L. Lam,et al.  ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets , 2013, Nature Medicine.

[42]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[43]  David Dunson,et al.  Genetic heterogeneity of diffuse large B-cell lymphoma , 2013, Proceedings of the National Academy of Sciences.

[44]  W. Hiddemann,et al.  Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. , 2012, Blood.

[45]  A. McKenna,et al.  Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia , 2012, Cell.

[46]  Jacques Ferlay,et al.  GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012 , 2013 .

[47]  L. Pasqualucci Diffuse Large B-Cell Lymphoma , 2013 .

[48]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[49]  P. Atadja,et al.  Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation , 2012, Proceedings of the National Academy of Sciences.

[50]  L. Staudt,et al.  The Bruton's Tyrosine Kinase (BTK) Inhibitor, Ibrutinib (PCI-32765), Has Preferential Activity in the ABC Subtype of Relapsed/Refractory De Novo Diffuse Large B-Cell Lymphoma (DLBCL): Interim Results of a Multicenter, Open-Label, Phase 2 Study , 2012 .

[51]  R. Spang,et al.  Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing , 2012, Nature Genetics.

[52]  Dereje D. Jima,et al.  The genetic landscape of mutations in Burkitt lymphoma , 2012, Nature Genetics.

[53]  Tim J. Wigle,et al.  A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. , 2012, Nature chemical biology.

[54]  D. Berry,et al.  From drug discovery to biomarker-driven clinical trials in lymphoma , 2012, Nature Reviews Clinical Oncology.

[55]  C. Sander,et al.  Genome Sequencing Identifies a Basis for Everolimus Sensitivity , 2012, Science.

[56]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[57]  L. Staudt,et al.  Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[58]  K. Elenitoba-Johnson,et al.  Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma , 2012, The Journal of experimental medicine.

[59]  R. Siebert,et al.  Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. , 2012, Cancer cell.

[60]  S. Pileri,et al.  The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development , 2012, The Journal of experimental medicine.

[61]  L. Staudt,et al.  Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics , 2012, Nature.

[62]  P. Borchmann,et al.  State of the art in the treatment of Hodgkin lymphoma , 2012, Nature Reviews Clinical Oncology.

[63]  Paul Shinn,et al.  Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. , 2012, Cancer cell.

[64]  K. Young,et al.  Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[65]  L. Staudt,et al.  Pathogenesis of human B cell lymphomas. , 2012, Annual review of immunology.

[66]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[67]  W. Chan,et al.  IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. , 2012, Blood.

[68]  Eric S. Lander,et al.  Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing , 2012, Proceedings of the National Academy of Sciences.

[69]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.

[70]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[71]  R. Arceci Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing , 2012 .

[72]  Nikhil Wagle,et al.  High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. , 2012, Cancer discovery.

[73]  Ryan D. Morin,et al.  Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. , 2012, Blood.

[74]  Govind Bhagat,et al.  Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. , 2011, Cancer cell.

[75]  Steven J. M. Jones,et al.  Frequent mutation of histone modifying genes in non-Hodgkin lymphoma , 2011, Nature.

[76]  Raul Rabadan,et al.  Analysis of the Coding Genome of Diffuse Large B-Cell Lymphoma , 2011, Nature Genetics.

[77]  Elias Campo,et al.  The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. , 2011, Blood.

[78]  A. LaCasce,et al.  Long-term complications of lymphoma and its treatment. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[79]  L. Chin,et al.  Making sense of cancer genomic data. , 2011, Genes & development.

[80]  A. Younes Beyond chemotherapy: new agents for targeted treatment of lymphoma , 2011, Nature Reviews Clinical Oncology.

[81]  Ryan D. Morin,et al.  Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. , 2011, Blood.

[82]  Joseph M. Connors,et al.  Oncogenically active MYD88 mutations in human lymphoma , 2011, Nature.

[83]  K. Anderson,et al.  Genetic variegation of clonal architecture and propagating cells in leukaemia , 2011, Nature.

[84]  Raul Rabadan,et al.  Inactivating mutations of acetyltransferase genes in B-cell lymphoma , 2010, Nature.

[85]  Elaine S. Jaffe,et al.  evolving concepts and practical applications The 2008 WHO classification of lymphoid neoplasms and beyond , 2011 .

[86]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[87]  R. Copeland,et al.  Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas , 2010, Proceedings of the National Academy of Sciences.

[88]  S. Gabriel,et al.  Advances in understanding cancer genomes through second-generation sequencing , 2010, Nature Reviews Genetics.

[89]  B. Coiffier,et al.  Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. , 2010, Blood.

[90]  C. Allis,et al.  Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers , 2010, Nature Reviews Cancer.

[91]  E. Winer,et al.  Dose-dense doxorubicin and cyclophosphamide followed by weekly paclitaxel with trastuzumab and lapatinib in HER2/neu-overexpressed/amplified breast cancer is not feasible because of excessive diarrhea. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[92]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[93]  E. Birney,et al.  A small cell lung cancer genome reports complex tobacco exposure signatures , 2009, Nature.

[94]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[95]  Jan Delabie,et al.  Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma , 2010, Nature.

[96]  Ryan D. Morin,et al.  Somatic mutation of EZH2 (Y641) in Follicular and Diffuse Large B-cell Lymphomas of Germinal Center Origin , 2010, Nature Genetics.

[97]  A. Lane,et al.  Histone deacetylase inhibitors in cancer therapy. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[98]  R. Dalla‐Favera,et al.  Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma , 2009, Nature.

[99]  Zhenyu Xuan,et al.  Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing , 2009, Nature Protocols.

[100]  J. Stamatoyannopoulos,et al.  Human mutation rate associated with DNA replication timing , 2009, Nature Genetics.

[101]  J. Maguire,et al.  Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing , 2009, Nature Biotechnology.

[102]  L. Staudt,et al.  Stromal gene signatures in large-B-cell lymphomas. , 2008, The New England journal of medicine.

[103]  J. Briones,et al.  Activation of the NF‐κB signalling pathway in diffuse large B‐cell lymphoma: clinical implications , 2008, Histopathology.

[104]  D. Weisenburger,et al.  International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[105]  Bruce D Cheson,et al.  Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. , 2008, The New England journal of medicine.

[106]  Jan Delabie,et al.  Oncogenic CARD11 Mutations in Human Diffuse Large B Cell Lymphoma , 2008, Science.

[107]  Markus Loeffler,et al.  Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). , 2008, The Lancet. Oncology.

[108]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[109]  Sigrid Stroobants,et al.  Revised response criteria for malignant lymphoma. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[110]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[111]  R. Walker,et al.  Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment I , 2006, Histopathology.

[112]  R M Levenson,et al.  Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment II , 2006, Histopathology.

[113]  Randy D Gascoyne,et al.  Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[114]  Richard Simon,et al.  Molecular diagnosis of Burkitt's lymphoma. , 2006, The New England journal of medicine.

[115]  Liming Yang,et al.  A loss-of-function RNA interference screen for molecular targets in cancer , 2006, Nature.

[116]  S. Bose,et al.  The Akt pathway in human breast cancer: a tissue-array-based analysis , 2006, Modern Pathology.

[117]  W. Kaelin The Concept of Synthetic Lethality in the Context of Anticancer Therapy , 2005, Nature Reviews Cancer.

[118]  J. Rush,et al.  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells , 2005, Nature Biotechnology.

[119]  L. Staudt,et al.  Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. , 2004, The New England journal of medicine.

[120]  L. Staudt,et al.  Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma , 2003, The Journal of experimental medicine.

[121]  B. Hancock,et al.  Non-Hodgkin lymphoma , 2003, The Lancet.

[122]  S. Aizawa,et al.  Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. , 2003, Immunity.

[123]  L. Staudt,et al.  The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. , 2003, Cancer cell.

[124]  Thomas Rüdiger,et al.  Inter‐laboratory and inter‐observer reproducibility of immunohistochemical assessment of the Ki‐67 labelling index in a large multi‐centre trial , 2002, The Journal of pathology.

[125]  Wei Gu,et al.  Acetylation inactivates the transcriptional repressor BCL6 , 2002, Nature Genetics.

[126]  Hengbin Wang,et al.  Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing , 2002, Science.

[127]  T. Honjo,et al.  Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells , 2002, Nature Immunology.

[128]  Meland,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[129]  Michael Karin,et al.  Activation by IKKα of a Second, Evolutionary Conserved, NF-κB Signaling Pathway , 2001, Science.

[130]  M. Karin,et al.  Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. , 2001, Science.

[131]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[132]  G. Evan,et al.  Cooperative interaction between c-myc and bcl-2 proto-oncogenes , 1992, Nature.

[133]  D. Green,et al.  Apoptotic cell death induced by c-myc is inhibited by bcl-2 , 1992, Nature.

[134]  T. McDonnell,et al.  Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18) , 1991, Nature.

[135]  A. Strasser,et al.  Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2 , 1990, Nature.

[136]  S. Korsmeyer,et al.  bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation , 1989, Cell.

[137]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[138]  R. Palmiter,et al.  The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice , 1985, Nature.