Monads on Higher Monoidal Categories

We study the action of monads on categories equipped with several monoidal structures. We identify the structure and conditions that guarantee that the higher monoidal structure is inherited by the category of algebras over the monad. Monoidal monads and comonoidal monads appear as the base cases in this hierarchy. Monads acting on duoidal categories constitute the next case. We cover the general case of n-monoidal categories and discuss several naturally occurring examples in which $$n\le 3$$n≤3.

[1]  A. Kock Bilinearity and Cartesian Closed Monads. , 1971 .

[2]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[3]  Associativity of the tensor product of semilattices , 1984 .

[4]  K. Szlachanyi The monoidal Eilenberg–Moore construction and bialgebroids , 2002 .

[5]  A. Kock Strong functors and monoidal monads , 1972 .

[6]  Stephen Lack,et al.  Hopf monoidal comonads , 2010 .

[7]  J. Golan Semirings and their applications , 1999 .

[8]  Stephen Lack,et al.  A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories , 2014, Appl. Categorical Struct..

[9]  Iterated monoidal categories , 1998, math/9808082.

[11]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[12]  The tensor product of semilattices , 1978 .

[13]  A. Kock Monads on symmetric monoidal closed categories , 1970 .

[14]  R. Street Monoidal categories in, and linking, geometry and algebra , 2012, 1201.2991.

[15]  G. J. Seal Tensors, Monads And Actions , 2012, 1205.0101.

[16]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[17]  M. Aguiar,et al.  HOPF MONOIDS IN THE CATEGORY OF SPECIES , 2012, 1210.3120.

[18]  A. Joyal,et al.  Sweedler Theory for (co)algebras and the bar-cobar constructions , 2013, 1309.6952.

[19]  M. Markl,et al.  Operadic categories and Duoidal Deligne's conjecture , 2014, 1404.3886.

[20]  Brian Day,et al.  Monoidal Bicategories and Hopf Algebroids , 1997 .

[21]  M. Aguiar,et al.  GENERALIZED HOPF MODULES FOR BIMONADS , 2012, 1212.3539.

[22]  Marcelo Aguiar,et al.  Monoidal Functors, Species, and Hopf Algebras , 2010 .

[23]  Enrichment over iterated monoidal categories. , 2004, math/0403152.

[24]  Alain Bruguieres,et al.  Hopf monads , 2006 .

[25]  S. Griffis EDITOR , 1997, Journal of Navigation.

[26]  R. Street,et al.  TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES , 2011, 1111.5659.

[27]  Robert Wisbauer,et al.  Bimonads and Hopf monads on categories , 2007, 0710.1163.

[28]  Richard Garner,et al.  Understanding the Small Object Argument , 2007, Appl. Categorical Struct..

[29]  F. E. J. Linton,et al.  Coequalizers in categories of algebras , 1969 .

[30]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[31]  The tensor product of semilattices , 1978 .

[32]  G. Bòhm,et al.  On the category of weak bialgebras , 2013, 1306.1459.

[33]  Anders Kock,et al.  Closed categories generated by commutative monads , 1971, Journal of the Australian Mathematical Society.

[34]  Zahava Shmuely The tensor product of distributive lattices , 1979 .

[35]  S. Lane Categories for the Working Mathematician , 1971 .

[36]  Ieke Moerdijk,et al.  Monads on tensor categories , 2002 .