An in vivo study of the concentrating process in the descending limb of Henle's loop.

An in vivo study of the concentrating process in the descending limb of Henle's loop. Two features of the urinary concentrating mechanism were examined in the rat: 1) the relative contribution of water extraction and solute addition to the osmolality of fluid in the descending limb of Henle's loop (defined in this paper as that nephron segment beginning at the junction of the cortex and outer medulla), and 2 ) the difference between the concentration of urea in fluid from the descending limb and from the collecting duct. Rats were studied under three conditions of urinary solute concentration varying from brisk water diuresis to steady-state antidiuresis. Net solute addition contributed substantially (33 to 40%) to the increase in osmolality of descending limb fluid. Urea was the principal solute added: compared to the filtered load, the amount of urea present in fluid at the hairpin turn varied from 334% in water diuresis to 642% in antidiuresis. The differences in urea concentration between fluid from the end of descending limbs and fluid from the tips of collecting ducts (the latter assumed to set an upper limit for interstitial urea concentration) were small, suggesting that the concentration of urea in descending limb fluid approaches equilibrium with that in papillary interstitium. These results are difficult to reconcile with the models recently proposed for generating hypertonicity of the inner renal medulla of the mammalian kidney by passive mechanisms. Etude in vivo du mecanisme de concentration dans la branche descendante de l'anse de Henle. Deux aspects du mecanisme de concentration de l'urine ont ete examines chez le rat: 1) la contribution relative de la soustraction d'eau et de l'addition de substances dissoutes a l'osmolalite du liquide de la branche descendante de l'anse de Henle (definie dans ce travail comme le segment du nephron qui commence a la jonction entre le cortex et la medullaire externe), et 2 ) la difference de concentration de l'uree entre la branche descendante et le canal collecteur. Les rats ont ete etudies dans trois etats de concentration urinaire allant de la diurese aqueuse importante a un etat stationnaire d'antidiurese. L'addition nette de substances dissoutes contribue substantiellement (33 a 40%) a l'augmentation de l'osmolalite du liquide de la branche descendante. L'uree est la principale substance dissoute ajoutee: la quantite d'uree delivree a la pointe de l'anse represente 334%, en diurese aqueuse, et 642%, en antidiurese, de l'uree filtree. La difference de concentration d'uree entre le liquide de la partie terminale des branches descendantes et le liquide de l'extremite des canaux collecteurs (ce dernier est suppose indiquer la limite superieure de la concentration interstitielle d'uree) et petite, ce qui suggere que la concentration de l'uree dans le liquide de la branche descendante est proche de l'equilibre avec la concentration dans l'interstitium de la papille. Ces resultats sont difficiles a accorder avec les modeles recemment proposes pour expliquer l'etablissement de l'hypertonie de la medullaire interne du rein des mammiferes par des mecanismes passifs.

[1]  J. Kokko Urea transport in proximal tubule and the descending limb of Henle. , 1972, The Journal of clinical investigation.

[2]  F. Rector,et al.  Countercurrent multiplication system without active transport in inner medulla. , 1972, Kidney international.

[3]  R. Jamison Micropuncture study of superficial and juxtamedullary nephrons in the rat. , 1970, The American journal of physiology.

[4]  R. Jamison,et al.  Effect of saline infusion on superficial and juxtamedullary nephrons in the rat. , 1971, The American journal of physiology.

[5]  K. Ullrich,et al.  [Water and electrolyte flow in the vascular counterflow system of the renal medulla. With a theoretical contribution by R. Schloegl: "Salt transport by non-loaded porous membranes"]. , 1961, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[6]  M. Burg,et al.  Function of the thick ascending limb of Henle's loop. , 1973, The American journal of physiology.

[7]  H. Schroeder,et al.  FAMILIAL HYPOTHALAMIC DIABETES INSIPIDUS IN RATS (BRATTLEBORO STRAIN). , 1964, The American journal of physiology.

[8]  C. W. Gottschalk,et al.  Micropuncture study of composition of loop of Henle fluid in desert rodents. , 1963, The American journal of physiology.

[9]  H. Valtin Hereditary hypothalamic diabetes insipidus in rats (Brattleboro strain). A useful experimental model. , 1967, The American journal of medicine.

[10]  G. Giebisch,et al.  Micropuncture study of distal tubular potassium and sodium transport in rat nephron. , 1966, The American journal of physiology.

[11]  G. W. Snedecor Statistical Methods , 1964 .

[12]  C. de Rouffignac,et al.  Micropuncture study of water, electrolytes, and urea movements along the loops of henle in psammomys. , 1969, The Journal of clinical investigation.

[13]  C. W. Gottschalk,et al.  Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. , 1961, The American journal of physiology.

[14]  M. Imai,et al.  Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. , 1974, The Journal of clinical investigation.

[15]  R. Jamison Micropuncture study of segments of thin loop of Henle in the rat. , 1968, The American journal of physiology.

[16]  C. W. Gottschalk,et al.  Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. , 1963, The American journal of physiology.

[17]  C. Rouffignac Physiological role of the loop of Henle in urinary concentration , 1972 .

[18]  R. Jamison,et al.  A micropuncture study of Henle's thin loop in Brattleboro rats. , 1973, The American journal of physiology.

[19]  D. Marsh,et al.  MEASUREMENT OF UREA CONCENTRATIONS IN NANOLITER SPECIMENS OF RENAL TUBULAR FLUID AND CAPILLARY BLOOD. , 1965, Analytical biochemistry.

[20]  R. Beale,et al.  A sensitive method for the colorimetric determination of urea , 1961, Journal of clinical pathology.

[21]  H. Valtin Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: effect of vasopressin and dehydration on the countercurrent mechanism. , 1966, The Journal of clinical investigation.

[22]  R. Berliner,et al.  Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. , 1968, The American journal of physiology.

[23]  R. Jamison,et al.  A micropuncture study of collecting tubule function in rats with hereditary diabetes insipidus. , 1971, The Journal of clinical investigation.

[24]  F. Roch-Ramel,et al.  Disposal of large urea overloads by the rat kidney: a micropuncture study. , 1970, The American journal of physiology.

[25]  K. Ullrich,et al.  Wasser- und Elektrolytflu im vasculren Gegenstromsystem des Nierenmarkes: Mit einem theoretischen Beitrag von R. Schlgl: ?Salztransport durch ungeladene Porenmembranen? , 1961 .

[26]  C. W. Gottschalk,et al.  Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. , 1959, The American journal of physiology.

[27]  F. Roch-Ramel,et al.  Urea concentrations in tubular fluid and in renal tissue of nondiuretic rats. , 1968, The American journal of physiology.

[28]  E. Windhager Micropuncture Techniques and Nephron Function , 1968 .

[29]  D. Marsh Solute and water flows in thin limbs of Henle's loop in the hamster kidney. , 1970, The American journal of physiology.

[30]  J. Kokko,et al.  Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. , 1973, The Journal of clinical investigation.

[31]  J. L. Stephenson Concentration of urine in a central core model of the renal counterflow system. , 1972, Kidney international.

[32]  J. Kokko Sodium chloride and water transport in the descending limb of Henle. , 1970, The Journal of clinical investigation.