Submodule integrated boost DC-DC converters with no external input capacitor or input inductor for low power photovoltaic applications

This paper proposes to utilize the internal solar cell diffusion capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable photovoltaic (PV) panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor.

[1]  F. Lee,et al.  Zero-voltage switching technique in DC/DC converters , 1986 .

[2]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[3]  Fred C. Lee,et al.  High-frequency quasi-resonant converter technologies , 1988, Proc. IEEE.

[4]  K. Pister,et al.  An SOI process for fabrication of solar cells, transistors and electrostatic actuators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[5]  Henk Jan Bergveld,et al.  A Cell-Level Differential Power Processing IC for Concentrating-PV Systems With Bidirectional Hysteretic Current-Mode Control and Closed-Loop Frequency Regulation , 2015, IEEE Transactions on Power Electronics.

[6]  Youngkook Ahn,et al.  A 50-MHz Fully Integrated Low-Swing Buck Converter Using Packaging Inductors , 2012, IEEE Transactions on Power Electronics.

[7]  V. Vorperian,et al.  Quasi-square-wave converters: topologies and analysis , 1988 .

[8]  Steven B. Leeb,et al.  Capacitor-Less Photovoltaic Cell-Level Power Balancing using Diffusion Charge Redistribution , 2015 .

[9]  Yuan Li,et al.  Modular subpanel photovoltaic converter system: Analysis and control , 2016, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC).

[10]  Gabi Friesen,et al.  Capacitance effects in high-efficiency cells , 1997 .

[11]  B. L. Agrawal,et al.  Determination of solar cell diffusion capacitance and its dependence on temperature and 1 MeV electron fluence level , 1992 .

[12]  R. S. Balog,et al.  Analysis and design of smart PV modules , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[13]  Faisal H. Khan,et al.  Light-generated effects on power switches used in a planar PV power system with monolithically embedded power converters , 2013, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[14]  Kwang-Hwa Liu,et al.  Quasi-Resonant Converters-Topologies and Characteristics , 1987, IEEE Transactions on Power Electronics.

[15]  A. M. Imtiaz,et al.  AC solar cells: An embedded “all in one” PV power system , 2012, 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC).